Canadian Poultry Magazine

Rapid On-site Detection of AI

By Nerine T. Joseph PhD Livestock Research Innovation Corporation on behalf of the Poultry Industry Council   

Features Health Research Poultry Production Production

University of Guelph researchers have developed diagnostic tools that provide results in minutes

Dr. Suresh Neethirajan and his team from the “BioNano Laboratory” of the University of Guelph have worked to develop a new detection system capable of detecting small amounts of avian influenza virus within minutes

 

Dr. Suresh Neethirajan and his team from the “BioNano Laboratory” of the University of Guelph have worked to develop a new detection system capable of detecting small amounts of avian influenza virus within minutes. It’s a diagnostic tool not only capable of detecting the virus rapidly on-site, but that will also enable field deployable, point-of-care diagnostic systems.

Influenza is one of the most common infectious diseases, resulting in up to half a million human deaths annually. Influenza A, a subtype of the virus associated with pandemics and causing most deaths, is further classified according to the properties of two viral surface proteins called hemagglutin (HA) and neuraminidase (NA). The H1N1 human-adapted strain of the virus caused up to 40 million human deaths in 1919 and the recently detected H5N1 avian influenza strain, commonly termed “bird flu”, has resulted in up to half a million human deaths since 2000.

Advertisement

“Considering the threat which avian influenza poses to human health and the growth of the agricultural sector, investing in disease control strategies is vital”, explains Dr. Suresh Neethirajan in describing the issue at hand. “Preventing the spread of the infection is the best way to keep the disease under control. Prevention in this case starts with effective surveillance.”

Dr. Neethirajan explains the current status of their findings in a report: “a novel sensing mechanism for quicker detection of avian influenza. Sensitivity of the sensing mechanism is possible for both H1N1-HA and H5N1-HA allowing the discrimination between avian and human influenza. This proves to be extremely valuable in the recent human influenza pandemic caused by poultry birds.

We have created a rapid animal health pen side diagnostic tool that only needs less volume of blood, less chemicals and less time compared to the currently used methods. The sensing mechanism and the technique have the potential to serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination for poultry industries, with further improvement on the architectures”.

The developed sensing assay will aid not only the poultry industries, producers and farmers, but also the public. The technology under development will ultimately be deployed towards early diagnosis of avian influenza. The results from the proposed point of care test for early diagnosis will assist in identifying potential public health threats.

This project was funded by the Poultry Industry Council and the Turkey Farmers of Ontario.

 

 

 


Print this page

Advertisement

Stories continue below