Research

May 16, 2017, Ottawa, Ont. - The Canadian Veterinary Medical Association (CVMA) starts the initial steps to develop a tool set to provide veterinarians with guidelines to support responsible and prudent use of antimicrobial medications in animals during a planning workshop in Ottawa, Ontario from May 9 and 10, 2017.“The veterinary community has a professional responsibility to support Canada's overarching strategy on antimicrobial resistance and use, and to adopt a multidimensional approach towards antimicrobial stewardship,” says Dr. Troy Bourque, CVMA President. “We are excited to embark on this project to meet veterinary needs for critical information, oversight and decision-support related to prudent antimicrobial use (AMU) in animals.”Participating in the workshop are Canadian veterinarians, veterinary researchers and educators, government officials and species-group stakeholders working in the areas of swine, poultry, beef, dairy, small ruminants and companion animals.They are working together to help identify AMU stewardship issues of concern, anticipate content and format needs for veterinary practitioners, address existing information gaps and discuss ways to communicate and engage the new tool set.The overall outcome of the project is to develop guidelines for prudent AMU across the six species groups and pilot a prototype tool set to review effectiveness and guide further improvements.“Ultimately, we want to promote enhanced antimicrobial stewardship to slow or limit the rising trend of AMR,” says Dr. Phil Buote, Chair of the Expert Advisory Group involved in the project, as well as Deputy Registrar for the Alberta Veterinary Medical Association.“Providing these guidelines and tools to veterinarians is intended to influence their prescribing behaviours and enhance communication with producers and industry on the science-based rationale for antimicrobial use. The goal is to promote stewardship and maintain access to effective medically important antimicrobials.”The CVMA is building on past achievements with its specific-usage Antimicrobial Prudent Use Guidelines for Beef Cattle, Dairy Cattle, Poultry and Swine (2008), and small animal guidelines through an Antimicrobial SmartVet application for urinary tract infections.Funding for the project is provided by Agriculture and Agri-Food Canada via their AgriMarketing Program supplemented with in-kind contributions by partners including the CVMA and veterinarians.
April 24, 2017, Tucker, GA – The U.S. Poultry Foundation announced the completion of a funded research project at the University of Delaware in Newark, Delaware, in which researchers report a potential cause of wooden breast lesion in broilers. The “woody breast” condition has long confused producers and processors, and research has been ongoing to find an explanation for the condition.The research project is part of the Association’s comprehensive research program encompassing all phases of poultry and egg production and processing.Dr. Benham Abasht and colleagues at the Univ. of Delaware found that the early lesions of the condition could be found in the breast tissue of one-week old broilers, and the first stage of the condition involves inflammation of the veins in the breast tissue and accumulation of lipid around the affected veins. The study went onto say that this condition was followed over time by muscle cell death and replacement by fibrous and fatty tissue. Genetic analyses also indicated that there was dysfunction in lipid metabolism in affected birds. This new understanding that inflammation of veins is the likely cause of wooden breast lesions in broilers will provide important direction for future research on this condition. READ MORE 
February 17, 2017 – Biomin welcomed 145 delegates from 23 countries representing the feed and poultry sectors over several days in mid-February in order to address how to solve the antibiotic-free production puzzle. With the subheading of “Guidelines for a responsible use of antibiotics in the modern broiler production,” the event afforded participants the opportunity to consider a host of different viewpoints.Expert speakers explored the role of genetics, nutrition, biosecurity and farm management. Highly interactive exchanges throughout the event converged on the idea that a holistic approach is the way forward in reducing antibiotics while maintaining high performing flocks.
A recent donation to the University of Guelph’s (UofG) Poultry Health Research Network (PHRN) will further enhance research and outreach opportunities connected to this hub of poultry research excellence.UofG alumni Vic Parks and his wife, Uta, have generously donated almost $40,000 to be used in the area of most need for the PHRN. “The generous gift by the Parks family will have an immense impact on the PHRN,” says Shayan Sharif, an immunologist in the Ontario Veterinary College’s department of pathobiology and leader of the PHRN. “This gift will afford PHRN the opportunity to serve its stakeholders, including industry, government and academia, more effectively through enhanced learning opportunities, research activities and knowledge mobilization.”The Parks have a strong family history with the University of Guelph and particularly the Ontario Veterinary College (OVC) and Ontario Agricultural College (OAC). Vic Parks graduated from the Ontario Veterinary College with his DVM in 1964 and both the Parks’ daughters are also OVC grads. Both Mrs. Parks and their son, Jason, graduated from OAC’s School of Landscape Architecture.With their daughters’ close ties to poultry health and welfare, “it seemed a good fit to provide this most recent donation to support poultry research at OVC,” says Vic, who began his career in large animal practice, before moving into companion animal medicine. He worked in marketing with Novartis Animal Health in Mississauga for 20 years before his retirement in 2006. During this time the Parks also had a farm near Guelph where they raised Limousin cattle. The Parks fell in love with Salt Spring Island on a trip to British Columbia more than 30 years ago and now live there, near Mount Maxwell Provincial Park. In addition to their donation to the PHRN, the Parks previously established an endowed Parks Family Travel Grant in OAC, as well as an endowed Parks Family Travel Grant in OVC. The latter is presented annually to a fourth-year Doctor of Veterinary Medicine student entering the Food Animal Stream for assistance travelling outside of Ontario on an external rotation.
The CPRC 2015 funding process approved projects that addressed several poultry industry priorities.  A major industry priority is improving the immune system, and two projects that specifically address this in poultry have recently acquired all necessary funding in addition to CPRC funding.  These projects are now currently under active research. Activation of innate immunityThe emergence and spread of resistant bacteria are rendering current antibiotics less useful.  Furthermore, the controversial practice of prophylactic use of antibiotics encourages the emergence of antibiotic-resistant microbes.  Therefore there is a need for the development of novel alternative strategies to antimicrobials for infectious disease control.CPRC has recently funded a project that will investigate an innate immune-based method of disease protection as an alternative strategy to antimicrobial use.  During initial exposure to pathogens, birds are reliant on their innate immunity for protection against infection.  Innate immune responses are not pathogen-specific but are activated by features/patterns characteristic of pathogens.  The innate immune system is capable of limiting a variety of infections once activated.  Although the innate immune system of chickens is developed at hatch, it is not activated; therefore, microbial agents (particularly bacterial pathogens) can infect chicks at the time of placement in the barn.Professor Susantha Gomis, from the University of Saskatchewan has studied the effects of a pattern characteristic of bacterial DNA, known as CPG-motifs to induce or activate the innate immunity.  Research has shown that synthetically generated CPG-motifs or ‘CpG-ODN’ as an immune system stimulant is capable of protecting neonatal chickens against specific bacterial infections.  Results obtained to date show that intranasal delivery of CpG-ODN is advantageous to in ovo delivery as innate immune stimulation coincides with the first week of the birds’ life, which is the most vulnerable period for bacterial infections.  Dr. Gomis’s current research will develop an effective method of intra-nasal delivery of CpG-ODN at hatch.  The research approach will be to initially develop a CpG-ODN delivery prototype for intranasal delivery of the CpG-ODN to neonatal chicks followed by field efficacy and safety trials.This research is also funded by NSERC, Chicken Farmers of Saskatchewan, (Saskatchewan Chicken Industry Development Fund), Alberta Livestock and Meat Agency Ltd., Western Economic Diversification Canada, Sunrise Poultry Hatchery, BC and Prairie Pride Natural Foods Ltd., SK. Activation of adaptive immunityRespiratory viruses have a negative impact on the poultry industry.  Although vaccination against respiratory viruses is used to control these common viral diseases, “vaccine failures” remain common.  CPRC has recently funded a project that will investigate the use of innate immune stimulants to induce adaptive immunity against respiratory viruses.  Adaptive immune responses are pathogen-specific and recognition of the pathogen results in both antibody-related and cell-mediated immunity.  Adaptive immune responses are slow to develop and may take up to a week before the responses are effective.  Associate Professor Faizal Careem, from the University of Calgary, has studied the effects of synthetic Pathogen Associated Molecular Patterns (PAMPs) in activation of innate immune responses.  Research has shown that these PAMPs are effective in reducing the impact of a number of avian bacteria and viruses.  PAMPS are also a known to increase the immune response of experimental vaccines when incorporated with these vaccines as ‘immune response enhancers’.Dr. Careem, will investigate the role of innate immune stimulants in the induction of adaptive immunity to respiratory viruses.  Results obtained in his prior research have demonstrated that in ovo delivered PAMPs can reduce a specific viral load in the respiratory tract of embryos and neonatal chicks.  in ovo delivered PAMPs also increases innate immune cell responses in neonatal chicks.  These responses have been shown to promote the development of adaptive immune responses in mammals.  Overall, this study will determine the efficacy and mechanism of in ovo delivered PAMPs in inducing pathogen specific adaptive immune responses against respiratory viruses.  The approach is centralized on stimulation of the innate immunity to reduce the viral replication at the site of entry allowing birds to acquire adaptive immunity.This research is also funded by NSERC and Alberta Livestock and Meat Agency Ltd.CPRC, its Board of Directors and member organizations are committed to supporting and enhancing Canada’s poultry sector through research and related activities.  For more details on these or any other CPRC activities, please contact the Canadian Poultry Research Council, 350 Sparks Street, Suite 1007, Ottawa, Ontario, K1R 7S8, tel: (613) 566-5916, e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it , or visit us at www.cp-rc.ca.
  When it comes to developing a vaccine in response to emerging diseases that threaten the lives of animals, a pharmaceutical company needs to move quickly. What it comes down to is being “first to know” and “fast to market”, said Dr. Raja Krishnan, formerly senior director of Swine and Poultry Research and Development for Zoetis and now of companion animal and equine biological research. Speaking to the Poultry Industry Council Health Day in Stratford, Ont., Krishnan put a global perspective on some of the corporate thought processes that precede his company’s decision to develop a vaccine. Use of surveillance“The world is becoming a smaller village,” said Krishnan. Zoetis, a leading pharmaceutical company with 10,000 employees in 120 countries, has access to global surveillance networks that use targeted regional surveillance to help guide rapid, high quality product development. As an example, Krishnan called Avian Influenza (AI) a “disease that is travelling around the world, creating headaches.” With that kind of migration, how do we become proactive? How do we get ahead of the next round of disease? “It’s a decision that can’t wait,” said Krishnan. “Seasons change whether we’re ready or not,” leaving the company to do the right thing for their customers and the entire industry, sometimes making those decisions in a matter of minutes. Questions, questionsThe AI outbreak affected over 48 million birds between December 2014 and June 2015. A lot of questions swirled around the decision to develop a vaccine; the disease was moving quickly. Did the industry want a vaccine? Would they use it? Would the government endorse it? Would the USDA recommend culling or vaccinating? Even if a product were developed, would it be relevant? Does it make sense? Adding to this uncertainty is the fact that AI doesn’t play by the rules. The virus can mutate rapidly, meaning that the vaccine needs to be changed frequently. That’s one of the challenges. “AI constantly surprises us,” said Krishnan. “Nothing beats preparedness but we may have to course-correct collectively.” When asked about the drivers behind the U.S. poultry industry deciding to use or not use the AI vaccine, Krishnan listed several of the questions such as, when will the product be available? Is there a risk of AI going into broilers as we go into the winter? Will this pressure us to act? Political aspects“Let’s not underestimate the economic and trade implications,” said Krishnan, what he called “the political aspects.” Will use of a vaccine result in trade restrictions? How does the issue get played out in the news? How does the consumer view the issue? What will the government do? How will pressure from retailers like Walmart affect vaccine use? He described the vaccination issue as “a jigsaw puzzle with so many uncertain parameters.” Under a similar disease challenge in April 2013, Porcine Epidemic Diarrhea (PED) was identified in the United States; by September 2014, conditional vaccine licenses were being issued in the U.S. Everything happened rapidly, said Krishnan, fuelled by a commitment to U.S. pork producers and the veterinarians who support them to help contain an outbreak in 30 states that was responsible for the deaths of more than seven million piglets in the U.S.. What if their company goes down the wrong path? Krishnan admitted that sometimes a vaccine works in a test tube but falls apart in the real world; sometimes a disease doesn’t cause a problem, in which case the resources will be pulled back and re-invested. With AI, are we headed in the right direction? Is it easier to cull the birds, clean up and move on? “That’s the million dollar question,” answered Krishnan. Thirty years from now we’ll have stories to tell.  
May 8, 2017 - Supplements containing arsenic have been banned in the European Union since 1999 and in North America since 2013. In many countries they are still added to poultry feed to prevent parasitic infection and promote weight gain.Scientists have now demonstrated that the danger to human health may be greater than previously thought because the metabolic breakdown of these compounds in chickens occurs via intermediates that are significantly more toxic than the initial additives. READ MORE
April 27, 2017, Gatineau, QC - The U.S. Federal Drug Agency (FDA) is giving Quebec-based Agrisoma Biosciences Inc. regulatory clearance to produce a new GMO-free and low carbon animal feed.The approval gives Agrisoma agricultural license to commercialize a protein byproduct of the Carinata oilseed.Carinata is currently grown by farmers to produce oil that makes low carbon biofuels for the aviation industry. Agrisoma has discovered a powerful, natural protein inside the Carinata seed, which can also be processed to produce a nutritious, low carbon animal feed with overall greenhouse gas emissions significantly lower than animal feed made from other common crops used as feed in the livestock industry."This decision places Agrisoma at the forefront of creating a planet-friendly animal feed alternative that helps reduces overall greenhouse gas emissions in livestock production, poultry, aquaculture and dairy markets," says Steve Fabijanski, President and CEO of Agrisoma. READ MORE
April 6, 2017, Nottingham, UK – Specially-bred wheat could help provide some of the key nutrients essential for healthy bones in poultry, reducing the need to supplement the feed, researchers at Nottingham Trent University and Aarhus University in Denmark have found. Scientists from the Department of Molecular Biology and Genetics at Aarhus University, discovered that wheat can be bred naturally to produce high levels of phytase – an enzyme needed to release phosphorous, which the bird requires to grow a healthy skeleton. The wheat was tested on poultry in feed trials carried out at Nottingham Trent University’s Poultry Research Unit. The poultry industry has been very successful in improving bird productivity, with growth rates increasing threefold over the last 50 years. However, in order to ensure that bird welfare is not compromised, particular attention has to be focused on ensuring that a healthy, well-developed skeletal frame is produced. Nutritionists have tackled this issue through supplements, to ensure the correct mineral balance in the diet. A key component is phosphorous, a mineral found in plant tissues, grains and oil seeds and which is vital for skeletal growth and maintenance. However, not only is phosphorous supplementation very expensive but also the phosphorous, from plant sources, present in the feed of poultry and pigs has a very low bio-availability, being bound up in a plant substance called phytate. Phosphorous bound in phytate cannot be utilized by these monogastric animals because they have negligible amounts of the phytase enzyme in their gastrointestinal tract – which is needed to make the phosphorous from phytate bioavailable. This anti-nutritional effect of phytate is estimated to cost animal producers billions of dollars a year. In addition to this, phytate-bound phosphorous, which is excreted, can have negative impact on the environment such as via eutrophication. For the latest work, published in the journal Animal: An International Journal of Animal Bioscience, plant-breeding scientists from Aarhus University used their expertise to make it simple and efficient to breed wheat with naturally high levels of phytase. Scientists in Nottingham Trent University’s poultry nutrition research team then designed and carried out a poultry nutrition trial to compare this new source of phytase to traditional poultry diet formulations. The trial shows that inclusion of the high phytase wheat in the feed is a highly effective way to unlock the phosphorous in the diet for use by the animal. ”Aiming for high phytase activity in wheat grains has been a key research target for many years,” said Dr Henrik Brinch-Pedersen, group leader at Aarhus University’s Department of Molecular Biology and Genetics. ”Reaching it was a milestone, but seeing that it works well in animal feeding is extremely satisfactory,” he added. “A particularly exciting additional implication of this work may actually be for humans. 700 million people globally suffer anaemia partly caused by the high phytate content of their diet. Providing a variety of wheat that contains its own phytate-destruction enzyme could improve the population health of many nations.” ”It has been exciting to explore a completely different way of providing meat chickens with the phosphorous needed for healthy bones,” said Dr. Emily Burton, head of the Poultry Research Unit in Nottingham Trent University’s School of Animal, Rural and Environmental Sciences. ”We will be looking to explore further the possibilities of wheat-derived phytase, as emerging research in this field shows the anti-nutritional effects of phytate in poultry extends far beyond locking away phosphorous.” ”Wheat is the predominant ingredient used in poultry diets and over 50 per cent of all the wheat grown in the EU is used in the manufacture of animal feeds,” said Steve Wilson, monogastric nutritionist at the animal feed producers ForFarmers. “If the naturally occurring level of phytase in this major cereal can be increased then it can make a significant economic contribution to our aim to improve the efficiency and sustainability of future feed production.” Plant Bioscience Ltd (PBL, Norwich, UK) – an independent technology management company specializing in plant, food and microbial science – was also involved in the study and funded the work. PBL is now working with partners in the plant breeding and feed industry to bring this innovation into use.
Poultry production has been using antimicrobial agents, and more specifically, antibiotics, globally for many decades. Let’s not get confused with the terms antimicrobials and antibiotics. All antibiotics are antimicrobials but not all antimicrobials are antibiotics. Antibiotics are largely used to improve animal performance by minimizing the inflammation caused by bacterial and protozoal infections (Escherichia, Salmonella, and Coccidia, etc.) and are also called growth promoters.
March 30, 2017, Quebec City, Que – It’s no secret that antimicrobial use and resistance is a complex, challenging issue re-shaping the future of animal agriculture and the feed industry in Canada and beyond. What does the feed industry need to know? What does the latest science say? How can people from across poultry, swine, beef, dairy and other production sectors maximize the power of nutritional strategies to tackle this issue? Researchers, feed industry specialists and other industry partners can get a unique, in-depth look at the latest science, challenges and opportunities on this issue, as the Animal Nutrition Association of Canada (ANAC) hosts the inaugural Animal Nutrition Conference of Canada (ANCC), May 10 to 11 in Quebec City, Quebec. (Those wishing to attend should register right away as early bird registration ends March 31. Registration at regular rates will be available on a limited basis through early May.) The new ANCC brings together the former Western Nutrition Conference and Eastern Nutrition Conference into one united national event, featuring top speakers, hot topics and the latest science-based knowledge and progress, along with outstanding discussion and networking opportunities. The theme of the inaugural conference is “Nutritional Strategies to Reduce Antimicrobial Usage in Animal Production,” putting a spotlight on the latest best knowledge available to drive strategies for success. “The inaugural Animal Nutrition Conference of Canada introduces a dynamic new event and platform for feed industry professionals, featuring topics most relevant to our industry, with the objective that they come out of the conference with new ideas and insights to move us forward,” says Christian Bruneau of Cargill, industry co-chair of the ANCC organizing committee. “We wanted this first edition to be focused on reducing the use of antimicrobials in animal production, which is obviously a top priority of the feed industry in Canada and globally. The event is designed to provide an unbiased scientific overview looking at this theme from as many nutritional angles as possible, presented by experts in several diversified fields. We encourage everyone interested to attend and be a part of the learning and discussion.” The conference program and format represents a natural evolution of the former regional conferences, yet is newly designed to capture fresh synergies and deliver enhanced value for participants. “Bringing the industry together in a single forum is a unique opportunity to explore, understand and share best practices,” says Andy Humphreys of Verus Animal Nutrition, ANAC board member. “With a consolidated forum, leaders can come together to network, challenge and innovate in this ever-changing industry. It reflects the desire of our members to create a new world-class conference that supports the position of our animal agriculture sectors as global leaders in the production of safe, economical and nutritious food products.” The conference comes hot on the heels of the new Veterinary Feed Directive in the U.S. and ahead of new anticipated regulations and policy changes in Canada regarding usage of antimicrobials. “I applaud the organizing committee for choosing a theme that is extremely timely and relevant right now,” says Dr. Mary Lou Swift of Hi-Pro Feeds, chair of the ANAC nutrition committee, which is comprised of nutritionists from member companies. “Participants can look forward to getting all the pertinent current technical information, including information regarding feed ingredients, nutrition and management, with insights directly from top experts. This includes the opportunity to meet these speakers for more in-depth discussions. This is also an enjoyable social event and opportunity to catch up with old friends and colleagues, while making new ones.” Conference speakers include a range of top scientists and researchers from Canada, the U.S. and further abroad. The pre-conference sponsor is Biomin America Inc. Full program details, ongoing sponsor opportunities, and registration information are all available at www.animalnutritionconference.ca.
We have two new cutting-edge Canadian poultry feed developments to present in this issue of Canadian Poultry. First up is a high-protein ingredient produced by Enterra Feed Corporation of Langley, B.C., which recently received Canadian and U.S. regulatory approval for use in animal feed (broilers and pets so far) – the first ingredient of its kind to do so.The ingredient is Whole Dried Black Soldier Fly Larvae (BSF). Black Soldier Flies are native to North America and do not bite or sting. The larvae are high in protein and fat, and grow quickly. Enterra’s Marketing and Operations Manager says BSF are renewable and environmentally-friendly, consuming pre-consumer food waste that would otherwise go to landfill, composting or waste-to-energy operations where the food nutrient value would be lost. Victoria Leung also notes that BSF larvae will consume a wide range of waste food, from fruits, vegetables and stale bread to grains and grocery store waste.All of the company’s production processes were developed in-house by Enterra’s research and engineering teams over the course of several years. “The adult flies are grown in cages under controlled environmental conditions,” Leung explains. “Once the larvae mature, they are either sent back to the cages to emerge as flies or they are harvested as product.”When asked about the potential reaction a consumer might have to eating chicken that has been fed dried fly larvae, Leung says that “based on our experience, we are not too concerned…Insects are a natural source of nutrients for chickens, fish and other animals – it’s what they eat in the wild. Free-range chickens, for example, naturally forage for insects.” The biggest barrier to commercialization of BSF has been clearing regulatory hurdles to achieve approval as a feed ingredient. “However, we are now seeing very good progress on this front, first with the Food and Drug Administration (FDA) in the U.S., and now with the Canadian Food Inspection Agency (CFIA) as well,” Leung explains. CFIA approval this summer came after four years of work, during which time the agency reviewed BSF as a ‘Novel Feed Ingredient,’ did a data review and a complete safety assessment (livestock, workers, food and the environment). “CFIA has a very thorough review process that involves assessing the product for safety, microbiology and efficacy for each target animal type, for example salmon, broilers and so on,” says Leung. “We also needed to show the product worked equivalent to or better than feed ingredients currently on the market.”Enterra is working with the CFIA and FDA to have its BSF approved for use in other animal feeds as well, including poultry layers, other poultry (turkeys, ducks), trout and salmon. Approval is anticipated in mid-2017. The firm is also working to develop new products from dried larvae such as oil and high-protein meal.Because it’s a natural ingredient, we asked Enterra if inclusion of BSF in chicken feed will help with bird gut health, for example perhaps reducing incidence of coccidiosis and necrotic enteritis. Leung responded by noting that “insects contain chitin as part of their exoskeleton structure. Researchers have proposed that inclusion of chitin or chitosan in poultry diets may improve poultry health; however, more research is needed.”Dr. Bob Blair, nutritional scientist and Professor Emeritus in the Faculty of Land and Food Systems at the University of British Columbia (UBC), has studied BSF. “The meal is closest in composition to fish meal and is a valuable feed ingredient,” he says. “It contains 40 to 60 per cent crude protein, depending on the amount of oil extracted during processing.” He has found no issues with blending it into feed, though he notes the high-fat product may have to be stabilized. “I do not have first-hand experience of feeding the meal to poultry since UBC no longer has the requisite facilities, but based on my talks with the company and my understanding of research conducted on similar products elsewhere, I regard it as an excellent poultry feed ingredient. Its main limitation is the cost - can it compete economically with other protein feedstuffs or will its cost limit it to more expensive feeds such as fish feed?” Blair adds that since BSF excrement can be used as fertilizer, the whole BSF production process “is to be welcomed as a sustainable way of producing a valuable feed ingredient from vegetable waste that would otherwise be dumped.”Enterra is currently selling BSF to both Canadian and U.S. customers in the poultry and pet food industries. Scratch and Peck Feeds in Bellingham, Washington began purchasing BSF in April 2015, shortly after it became available on the U.S. market. “We wanted it to package as a poultry treat as an alternative to meal worms which are predominantly grown in China,” explains owner Diana Ambauen-Meade. “One of our company’s values is to source our ingredients as locally/regionally as possible so we don’t buy anything offshore. And we value that they feed the larvae pre-consumer food waste that would normally end up in a landfill as it is a very effective way to close the food waste loop.” She says she fully intends to integrate BSF into her feeds as an alternative protein source to the fishmeal currently used.  When asked about the potential to have widespread inclusion of BSF in U.S. and Canadian poultry feeds, in terms of the environment impact that would have on diverting landfill waste and in the avoidance of other feed ingredients which have greater impact, Leung has a positive outlook. “There is a big potential for our insect ingredients to become a standard inclusion in livestock diets,” she says. “Our company plans to expand far beyond our Langley facility – anywhere there is an abundance of food waste, it is possible to build a commercial insect-rearing facility to upcycle the waste nutrients into sustainable feed ingredients.”Antibiotic replacement?Ontario-based AbCelex Technologies has developing a line of non-antibiotic, non-hormonal products that eliminate or significantly reduce pathogens in the chicken gut such as Campylobacter and Salmonella. “Since these innovative products are based on natural antibodies, there is no risk to human health and no possibility of antibiotic resistance,” says President and CEO Saeid Babaei. “The products will be delivered as a feed additive. Chickens simply ingest the antibody and it selectively neutralizes the bacteria. Our results in live chicks show 95 per cent inhibition of the Campylobacter pathogen, far higher than any other pre-harvest method used in industry and what expected by regulators.”AbCelex is now moving forward with young adult field studies to be followed by large broiler trials to support regulatory submissions, with a goal of market launch in late 2018 or early 2019. “Being the first product of its kind, we will work with various regulatory agencies in getting our products approved,” Babaei notes. “Our commercialization strategy is to directly market to large poultry producers/processors as well as co-marketing opportunities with larger animal health companies…We have already partnered with one of Ireland’s largest poultry producer/processor, Carton Group, which may be involved with commercial farm studies and product registration in Europe.”The very small antibodies (also called single-domain antibodies or nanobodies) employed by AbCelex occur naturally only in the blood of cameloids (camels, llamas and alpacas) and sharks. “The discovery of this novel class of antibodies stems from the early 1990s,” Babaei explains, “when Belgium scientists were studying the blood of cameloids and they noticed that the immune systems of these species produced a unique type of antibody around a tenth of the size of usual antibodies — small enough that they were orally bioavailable, whereas conventional antibody drugs must be injected to enter the bloodstream.” The nanobodies’ small size and flexibility for molecular engineering also allows for cost-effective mass production. In the past several years, AbCelex has increased the resistance of its lead products to the acidic conditions of the animal digestive tract, and also significantly improved their resistance to heat (required in poultry feed preparation). In the past year, they have also produced their lead antibodies in various micro-organism systems, such as yeast. In July 2016, AbCelex received an investment of $3.4 million through Agriculture and Agri-Food Canada’s ‘AgriInnovation Program’ to support further product development. Babaei says this will be conducted in collaboration with Canadian and international academic institutions, companies and contract research groups.
May 12, 2017, London, Ont. - Researchers are delving deeper into the nesting motivations of birds and finding them as finicky about nesting as humans are about their comfort.They are also finding more research needs to be done.Michelle Hunniford, a postdoctoral researcher in the Department of Animal Biosciences at the University of Guelph, is researching the nesting behaviour of laying hens.She has found that new ways of evaluating nesting behaviour are needed.She told a session at the London Poultry Show that settling behavior, the process hens go through to find and get themselves comfortable to lay an egg, along with egg location should drive cage design evaluation. The speed that a hen gets to that comfort level is correlated to how much pecking it does to establish its space and how long it occupies nesting space.The University of Guelph re-searchers observed hens through their waking period — lights came on at 5 a.m. — and recorded their behaviour.They then created graphs that showed a “settled” laying hen moved through its settling phases in more defined periods compared to an “unsettled” layer hen.In most enhanced systems, the layers have a nesting area, with flooring and a scratch area.Hunniford and her colleagues looked at what nests would motivate hens to settle in the desired nesting areas.They found it was difficult to predict which hens would lay where and some hens preferred one system while others chose another.As a result, one of Hunniford’s recommendations include that providing two smaller nests is more important that providing one large, fully furnished nest. READ MORE
Truss plate corrosion can be an issue in barns - but it doesn’t have to be. The life span of truss plates, hangers, screws and nails in the truss system depends on the materials used, barn design and maintenance.
Bedding is being examined as an increasingly important factor in poultry health, and can affect a producer’s bottom line through how much labour is involved in spreading it and how well it cleans up.Jillian Jasper, self-proclaimed “head of the herd” at ABC (Animal Bedding Company) in Woodstock Ont., is a firm believer that producers should be taking a much closer look at their bedding choices. “We are told over and over by producers of poultry and every other livestock species that outside of a vet making bedding suggestions in times of health crises, [that they] are never approached to talk bedding,” she notes. “We believe that our products outperform straw, shavings, drywall, peat moss, sand and everything else on the market in terms of animal health and positive environmental inputs. When cull rates with our poultry clients consistently come back with zeroes for respiratory and zeroes for pad/leg health issues, it confirms our complete belief in what we offer.” ABC provides bedding for poultry, cattle, horses, sheep, pigs and exotic animals. It was founded in 2013. Ray Batchelor, a retired Chrysler engineer, got all of the equipment and manufacturing processes up and running. Jeffrey Moore, a chartered professional accountant, runs the overall organization. Jasper takes the lead with sales, marketing and education, using skills gained earlier in her career in animal health pharmaceuticals. She says that during her years of representing other products, she was always searching for her own proprietary product to bring to market. About 15 years ago while showing her horses in Ohio, she came across bedding that appeared to be made from chopped-up cereal boxes. It never left her mind. “After years of research into adhesives, dyes, components of cardboard, other materials, packaging, and so on, I developed a cardboard product that seems simple,” she says, “but it is brought to its greatest potential through addressing the growing consciousness in the ag sector of better animal husbandry and environmental stewardship.”  HOOF-PRINT is one of the company’s five products. It manufactured by chopping up virgin corrugated cardboard, extracting the dust and compressing the product into 35-pound bales. It is free of salmonella, toxins, labels, tapes or inks, with what Jasper calls “an overwhelming absorption capacity.” After use, it turns into black, composted material in six to nine weeks. TRACK-PRINT is a mineral bedding which is widely used in all species. It balances pH, absorbs moisture, is non-caustic, acts as a natural insecticide and reduces ammonia. It works similarly to diatomaceous earth, killing insects by scraping at their shells when they crawl through it but Jasper says it is better because it does not lose stability when exposed to moisture.  She says it is very effective for darkling beetle control in poultry barns. Bedding for each species required its own dedicated focus. “Eighty per cent of our market is poultry,” Jasper notes. “Initially, it was twenty per cent, but this changed rapidly as we educated and gained exposure in the poultry segment. Our products are very conducive to the biosecurity and general sensitivity of the poultry segment.” ABC distributes across Canada, and will currently ship to the U.S. if Canadian customers have operations there. “Holland is a big potential market for us,” Jasper adds. “We have both a dairy and poultry contingent in Holland…they are very innovative. They love our stuff. And all of those Holland connections come through our existing users.” TrialsBoth HOOF-PRINT and TRACK-PRINT are being trialed at many operations in southern Ontario.Hybrid Turkeys recently trialed HOOF-PRINT as part of its continuous overall company focus on innovation and improvement, especially in this case, the potentially improved environmental conditions due to the ‘dust free’ nature of this bedding. The trial lasted 15 weeks (from 5 weeks to 20 weeks of age) and the following were evaluated: curability, absorption, ammonia levels, dust levels and overall acceptability/comfort of the birds. Overall, Hybrid Turkeys is pleased with the results of the trial but feels further testing is required at different ages and at different stages of production (e.g. rearing phase and lay/production phase). The company also wishes to find out more about the biosecurity processes for the manufacturing of this type of bedding.University of Guelph doctoral candidate (pathobiology) Ryan Snyder is currently studying the effect of bedding and other factors on coccidiosis survival at several area farms. He will have results in years to come.Peter Greydanus who raises broiler breeders for Maple Leaf at Greyda Plains Poultry in Petrolia has used TRACK-PRINT since last October. “It’s controlling the flies and it’s a bit cheaper and less dusty than diatomaceous earth,” he says. “I like it. I think Jillian’s on the right track with it, it’s non-chemical. You have to re-apply after manure builds up and I’m curious to see how it works on darkling beetles.”Greydanus has used HOOF-PRINT bedding in one pullet cycle so far. “I used it combined with straw and it was a rough cycle for coccidiosis because it was too dry,” he says. “Whether it was the product or my management, you’d have to add moisture I think. There’s a lot less dust with it than straw or shavings. I think it would be the same cost as shavings and fewer bags to handle.” In October however, Greydanus was very happy with the performance of HOOF-PRINT in a breeder barn cycle. He plans to definitely use it in the breeder barn going forward instead of straw, at least for winter flocks because it dries “very nicely.”
The swell of demand from North America’s largest food companies for cage-free eggs is a stunning example of why public trust in our country’s food system matters. The huge number of cage-free commitments from food makers, retailers and restaurants in Canada and the U.S. stems from how these companies perceive overall consumer opinions on hen housing – the fact that consumers do not trust that farmers know best with regard to housing systems that provides the best life for hens. While these North American food companies (see sidebar) are no doubt being influenced by cage-free commitments already made by their subsidiaries or peers in Australia, the UK and the EU, their promises to only source cage-free eggs in these other parts of the world are again based on consumer perception, largely influenced by animal activist groups.   The united cage-free front of North American food makers, restaurants and retailers suggests that cage-free housing is inevitable in both Canada and the U.S. There are simply no major egg buyers who want anything else. “This is a done issue in the U.S.,” says Josh Balk, senior director for food policy at the Humane Society of the United States. “I can’t see the Canadian scenario being any different.”   However, whether egg farmers in either country will be able to meet the deadlines  is far from certain.   Eggs Farmers of Canada (EFC) has currently committed to reaching 50 per cent cage-free production within eight years (2024), 85 per cent within 15 years and to have all hens “in enriched housing, free-run, aviary or free-range by 2036, assuming the current market conditions prevail.” This does not line up with North American food industry timelines of sourcing only cage-free eggs by 2025 or sooner. For example, Retail Council of Canada members such as Loblaw and Wal-Mart have committed to 2025, and David Wilkes, Retail Council senior vice-president of government relations and grocery division, says they “will continue to work with producers and processors to transition to this housing environment.” Burnbrae, sole egg supplier of McDonald’s Canada, is switching all its production for that customer to cage-free to meet the restaurant chain’s 2025 deadline. In the U.S., Rose Acre Farms and Rembrandt Farms, the country’s second and third largest egg producers, are already converting to cage-free barns. A&W Canada currently stands alone among North American food industry companies in its support of enriched housing. The fast food company says it “has worked very hard to have our eggs come from hens that live in enriched cages,” and that it “will continue to serve eggs from enriched housing while we work towards better cage-free housing.” The chain recognizes that Canadians want their eggs to come from hens housed outside of cages, but adds that “there are currently no viable commercial cage-free housing options that meet our strict standards.” To that end, in March 2016 A&W announced it wants to work with Canadian charity Farm & Food Care to bring egg industry partners, retail and food service from across Canada together with the U.S. Center for Food Integrity’s Coalition for a Sustainable Egg Supply to discuss all issues impacting sustainable eggs (including food safety, environment, hen health, worker health and safety and food affordability), and determine areas that the Canadian egg sector feels funding would be best spent. A&W has offered a grant of $100,000 to further this research. For it’s part, EFC recognizes research that shows each production system comes with trade-offs. We asked EFC about the fact that for any Canadian egg farm to convert to enriched cages and keep the same production level, new barn(s) will likely have to be constructed because the same number of birds cannot be housed in enriched cages in a given barn as were housed in battery cages. Does EFC see this as a particular challenge for Canadian egg farmers in terms of costs and the land required? “There are many factors a farmer needs to consider when evaluating the realities of transitioning an operation,” EFC states. “What’s important to keep in mind is that every farm is different (e.g. size, location, etc.) and until farmers start working through the implications of their transition—carefully considering his/her requirements—any estimation of cost is speculative.” While EFC is currently looking into the financial implications of various alternative housing systems, we asked also if cage-free barns are less expensive than enriched cages, taking into account the possible requirement for new barn(s). “The decision to retool an existing barn or build a new barn is an important component of each farm’s individual transition plan,” EFC states. “Shifting to a new production system with different space requirements can impact the overall size of the flock. Typically, alternative housing systems have a larger building footprint and do not contain as many birds and conventional housing systems.” Cost is a concern for the United Egg Producers, which represents those producing almost 90 per cent of American eggs, and for the National Association of Egg Farmers (NAEF), which represents about one per cent of U.S. production. NAEF is against mandated cage-free production for other reasons as well, including increased egg prices, increased mortality due to cannibalism and other factors, increased pecking injuries, higher risk of contamination due to prolonged exposure of eggs to litter and manure in nest boxes or on the barn floor, high dust levels and ergonomic challenges in egg collection.   Canada’s National Farm Animal Care Council (NFACC) released the draft version of the Code of Practice for the Care and Handling of Layers for public comment in June. The draft does not promote any type of housing over any other, but does include new recommendations for roomier cages. In the end however, any attempt to convince the North American foodservice industry of the merits of any other type of housing except free-run/cage-free may be a lost cause. Marion Gross, senior supply chain management vice president at McDonald’s USA, may have summed it up best in her statement in January 2016 in the Chicago Tribune: “Enriched [housing] doesn’t mean anything to our customers, but they know what cage-free means.”
North Carolina State University (NCSU) is the only remaining venue in North America at which comparative testing of egg laying stocks takes place. At one time in the mid 1960s, there were more than twenty locations in the U.S. and Canada where Random Sample Laying Tests were conducted. Instead of abandoning testing altogether, NCSU chose to superimpose a variety of management systems, cage sizes and configurations on top of the strain comparisons. In the 39th test, stocks were exposed to the following: conventional cages, enrichable cages, enriched colony housing, cage-free and range. A total of 20 strains from six different breeding companies were included. Of the 20 strains, 14 have wide commercial distribution in the southeast U.S., while the other six are either experimental or have limited or no distribution. With respect to Canadian distribution, most of the stocks available here are included in the test. Day-old chicks were supplied either by breeders or commercial distributor hatcheries.   Conventional cage resultsTwo cage densities were used: 69 sq. in. (445 cm2) and 120 sq. in. (774 cm2). The higher density (445 cm2) approximates to commercial practice, although space allowances are progressively increasing. Summaries of the data were prepared from 119 to 483 days of age. The flocks were then moulted and data was again summarized at 763 days of age. Only the first cycle (to 483 days) data are reviewed here. Comparing the cage densities showed that in white-egg hens housed at 774 cm2/hen, feed intake was higher by 10 g/bird/day, eggs per hen housed was higher by 7 eggs/hen and mortality lower by 0.86%. Comparing the strains is complex. Table 1 shows some key data for all 12 white-egg strains tested. Feed intake varied from 96 to 110 g/hen/d. This is, of course reflected in the feed cost data. The strain with the lowest feed intake (Hy-Line CV26) also had comparatively low egg production and egg weight, and thus low value of eggs minus feed. However, the strain with the next lowest feed intake (Shaver White) had much higher egg production, modestly higher egg weight, and very favourable value of eggs minus feed. With two exceptions, the numbers of eggs per hen housed were quite uniform. Statistical analysis showed that most of the strain differences were not significant. Those with production >317 eggs/hen housed were significantly different from those with production <300. Mortality data are not shown, but mortality was low, averaging 3.9%, and no significant strain differences were observed. Egg weight was also quite uniform. The average of 60.1 g/egg leads to size categories of approximately 63% extra large, 22% large and 8% medium. For each 1.0 g increase in average egg weight, approximately 5% of the large size move to extra large. In the test situation, extra large eggs were priced approximately three cents per dozen more than large. In most Canadian situations, this premium does not exist. However, when egg weight falls 1.0 g below average, the number of medium size eggs increases two to three per cent, which causes a significant financial penalty. Turning to the nine brown-egg strains, the first thing to note is the difference in performance between the two cage densities. Brown-egg hens given more space (774 cm2 versus 445 cm2) consumed 11 g more feed/d, and laid 16 more eggs/hen housed. Mortality was 2.5% less in the larger space, although this difference was not statistically significant. The data, when combined, showed an extra $1.00 in egg value minus feed cost for the higher space allowance. For the white-egg strains, the difference was only $0.28. The brown-egg strains feed consumption varied from 103 to 110 g/hen/d, and hen-housed production from 304 to 314 eggs. Few of these differences were statistically significant. With one exception, the values for egg income minus feed cost were also quite uniform. One is impressed by the relatively small differences between the white and brown-egg strains in these comparisons. Feed intake was actually lower among the brown-egg strains; egg numbers and egg weight were only marginally lower. Traditionally, one would expect higher feed intake and egg size for the brown strains. Alternative housingEnrichable cages (EC) are 66 cm x 61 cm with 9 birds/cage (447cm2/hen).  The cages are belt cleaned. Enriched colony housing (ECS) is the same style of cage but 244 cm wide and includes a nesting area and a scratching area of 1.85 m2  each, plus two perches each 123 cm long.  Two bird densities were compared in this system: 36 hens/cage (447 cm2 each) and 18 hens/cage (897 cm2 each). Cage-free housing consists of a combination of slat floor and litter, with nest boxes and perches.  Each pen is 7.4 m2 and holds 60 hens in the adult phase (8.1 birds/m2).  Birds in this system were grown in the same pens used for the laying phase. The range system, used for only three strains, consists of pens 3.7 m x 2.0 m holding 60 hens.  They have access to 334 m2 of grass pasture.  The pasture is divided in two and rotated every four weeks. Not all strains were exposed to all of these environments. For example, only two brown-egg strains and one white-egg strain were tested on range.  All except two strains experienced the enrichable cages and the enriched colony system. This makes it hard to compare both the strains and the environmental systems, but we can draw a few conditional conclusions. All birds were moulted during the test, which lasted until 623 days of age. Comparing environmental systemsTen white egg strains were exposed to both EC and ECS systems.  The most striking difference between these was with respect to laying house mortality. When hens were housed at 69 sq. in./hen,  the ECS system showed 23% laying house mortality compared with 16% for the hens in smaller cages, but the same space allowance.  While both values are extremely high for contemporary laying flocks, the larger colonies were clearly at a disadvantage.  Mortality for the same strains in conventional cages in a different building was 4.3%. Brown-egg strains compared in the same conditions showed overall lower mortality and no differences between ECS and EC. Among the white-egg strains, only Hy-Line W36 had relatively low mortality (6.0% and 7.4% in the EC and ECS systems respectively.) Comparing the white egg strains in the ECS system at two different densities (447 cm2 versus 897 cm2) showed a definite benefit to the lower density.  Mortality was only 9.9% versus 23%. Brown egg strains also benefited from the more generous space allowance, although to a lesser extent: 7.1% mortality versus 10.9%. Seven white egg strains housed in the cage-free system showed mortality of 14.3%; eight brown egg strains had 15.6%. On free range, the one white egg strain tested had 13.3% mortality, while two brown egg strains averaged 3.75%. While there were some strain differences in mortality within management systems, the general conclusion must be that large colonies and higher densities are associated with higher mortality.  This is not a new discovery but one that is not encouraging for those producers planning on meeting the demand for cage-free or even furnished cage management systems. Feed intake and egg production were also affected by management system, as shown in Table 4. In general, birds in larger colonies tended to consume more feed. This may be because of perceived increased competition in the larger colonies.  Feed consumption was also higher in the cage-free and free range systems.  As to egg production data, there were no real trends and the figures for the brown strains kept at 447 cm2 do not appear to be consistent with the other data. Because of the fact that not all strains were tested in all environments, it is not possible to make realistic comparisons between them. Presented in Table 5 are the highest ranked “Egg value minus feed cost” data for each of the environmental systems. Most notable among these data are the low values for the free-range flocks.  These reflect relatively low egg production and high feed cost. As in conventional cages, the greater space allowance in the enriched cages resulted in higher values for egg income minus feed cost. Whether this would offset the higher cost associated with the extra space is doubtful. All told, these data from the North Carolina Laying Test are of interest but this is limited by the very high mortality experienced in all but the conventional cage systems.  Causes of mortality are not reported.  As noted above, higher mortality is frequently associated with large colonies and with non-cage systems.  This runs counter to the popular belief among consumers that bird welfare is improved in such systems.  Until the systems can be improved, or consumers become more accepting of small colonies or conventional cages (unlikely in this writer’s opinion) industry will be faced with higher costs while producing eggs to meet the demand for cage-free eggs. For those interested in the complete data from the test, they are available online at https://poultry.ces.ncsu.edu/layer-performance/  
April 9, 2016 - Connections and collaboration were a key theme during the Poultry Health Research Network (PHRN) Research Day at the University of Guelph March 29. The research day brought together representatives from government, industry and academia to provide updates on current research and prompt discussion for future collaborations. “The whole intent was to ensure that our industry partners and our researchers, either from academia or the government agencies that work with us, have a chance to mingle and talk about their research needs and what we can do to address those research needs,” said Dr. Shayan Sharif, an immunologist in the Ontario Veterinary College’s Department of Pathobiology and leader of the PHRN. The University of Guelph has had a long-standing commitment to innovation in animal health and production, with one of the largest groups of poultry scientists and poultry experts in North America. The Poultry Health Research Network has been steadily expanding since its inception in 2012 and now includes more than 60 members from across the UofG campus, as well as industry and government researchers.  Lloyd Longfield, Member of Parliament for Guelph, addressed the group during lunch, pointing out how important it is to work together to “share resources and specific expertise to solve global problems.” Bringing everyone together in the room is where it needs to start, he added. “We’ve got researchers from the government here, we’ve got researchers from university, we’ve got industry and that’s really the chemistry we need to drive forward.” “Here at the University of Guelph we have an unprecedented and unique gathering of expertise in support of the poultry industry,” said OVC Dean Jeff Wichtel, in addressing the group. “It involves upwards of five of our seven colleges and spans the breadth from poultry welfare right through to vaccine development and molecular basis for immunity to disease.” During the day, UofG researchers, including MSc, PhD students and post-doctoral researchers, outlined current research in a variety of areas, including poultry welfare, biosecurity, vaccine development, nutrition, and antimicrobial resistance. Afternoon presentations with industry representatives, including pharmaceutical, feed, genetics and equipment companies, and researchers provided a forum to explore areas of mutual interest for future collaborations. Sharif recognized funding from the Ontario Ministry of Agriculture, Food and Rural Affairs for part of the research day and also acknowledged the Poultry Industry Council, Canadian Poultry Research Council, Livestock Research Innovation Corporation and the Ontario Veterinary College for their ongoing support for PHRN’s work. 
The German food industry has come together to form a partnership that addresses animal husbandry issues. Together, farmers, retailers and the meat industry are working to ensure stricter animal welfare standards are enforced – and that farmers are compensated for going the extra mile.
Dec. 5, 2016 - The Canadian Food Inspection Agency (CFIA) is seeking public comment on proposed amendments to the Health of Animals Regulations Part XII which deals with humane transportation. This is an opportunity for Canadians to share their views on the transportation of animals.The draft amendments appeared in the Canada Gazette, Part I on December 3, 2016 and the public comment period will run until February 15, 2017.Quick Facts The CFIA establishes and enforces regulations for the welfare of animals during transport, as specified in the requirements of the Health of Animal Regulations, which governs the humane transportation of animals in Canada. The current regulations were developed in 1977 and few amendments have been made since then. The proposed regulations are the product of ten years of consultation with industry, the public and special interest groups. Protecting animal welfare in Canada is a shared responsibility between governments (federal, provincial and territorial), industry (e.g. producers, transporters, processors, registered slaughter establishments) and the public. Health of Animals Regulations: Part XII: Transportation of Animals-Regulatory Amendment - Interpretive Guidance for Regulated Parties
  Chickens, like all vertebrates, are governed by a circadian rhythm that is governed by the natural light/dark cycle of day and night. As such, chickens mostly rest and are inactive at night, especially when it is dark.  Although they do rest during the daylight hours, most of their feeding and activity is performed during this time.    Studies show that just as in humans, major abrupt changes to the day/night cycle of the chickens, such as waking up the chickens at night with loud noises, will lead to stressed and anxious chickens. In addition, studies have shown that loud noises such as found near airports, rail road tracks or loud hydraulic or pneumatic equipment and machinery close to the chickens leads to lower egg production, stunted growth, higher blood pressure, stress and fatigue in the birds.  A study has shown that loud noise simulating noisy ventilation fans and operational machines found at slaughterhouses led to increased plasma corticosteroids, cholesterol and total protein.1 This study recommended the control of noise pollution near the chickens and chicks. Other studies show that noise levels past the 85 dB level can lead to a decreased feed intake of between 15 to 25 per cent.  Lower feed intake stunts chicken growth — something the poultry farmer or processor does not want. But all is not lost. Below are some tips and advice to reduce the noise level to an acceptable and healthier level leading to happier and healthier chickens – both psychologically and physically. First identify the sources of noise pollution equipment. Use a sound measuring tool if necessary. Erect sound barrier secondary glazing in windows. Establish your chicken farm in a quiet area away from airports and industrial areas and rail yards. Maintain your ventilation fans and feeding machines making sure they are not producing excess noise. Try to buy machines that produce the least noise possible. Avoid repairs and renovations with noisy equipment, especially during the rest and sleep hours of the chickens Muffle noisy equipment. Make sure that family members do not honk the car horn too often during chicken sleep hours. Investigate “active noise control” - a noise cancelation anti-noise system that produces sound waves of the same amplitude as the noise pollution, but in opposite polarity causing a cancelling of the noise pollution. Train employees and family members to respect the sleep hours of the chickens - they should not be screaming out to each other, joking etc. around sleeping chickens. We simply see that it’s about common sense and respect. We need to respect the fact that chickens are living beings that need many of the same things that we need, including a good night’s sleep and some peace and quiet during the day. We just have to sensitize ourselves by imaging how we feel when we are woken up while we are asleep. We feel grouchy the next day and are less productive in the office. If we internalize this reality, we will treat the chickens with more respect, which not only is the proper thing to do, but it is actual good business sense. The results will be healthier, bigger chickens.  Thus, everybody gains by respecting the chickens needs not to be exposed to high levels of noise pollution: the commercial poultry farmer, the backyard chicken farmer enthusiast, the processor and the chickens. Ronnie P. Cons is EVP of C&C Packing Inc., a leading Canadian distributor of meat and poultry. He can be contacted at
  I was attracted to a review article on this topic in the September 2015 issue of the World’s Poultry Science Journal (Harlander-Matauschek et al, vol.71, pp 461-472).  It is the outcome of an International Keel Bone Workshop held in Switzerland in 2014. For local interest, I also reviewed the paper of Petrik et al in Poultry Science, vol.94, pp579-585. Unusually for a review paper, this one is primarily targeted at what is not known, and mainly consists of 9 recommendations for further study. Most scientists in the field, and also experienced managers of layers, intuitively know that the keels of laying hens are susceptible to damage during the laying cycle.  This was first brought to light several years ago when scientists in England examined carcases of spent hens following slaughter, and found a high incidence of keel damage and breakage.  The degree to which this causes pain or distress during the life of the birds is not known. In live birds, damage to the keel can only be determined by palpation, and there is no recognized standard method, or protocol for evaluating or reporting the results.  There is also the distinction between actual fracture of the keel, and various levels of distortion or deformity.  Fractures usually result in a callus around the fracture site that can be detected on handling the bird.  So the first recommendation in the review paper is to develop a uniform method of evaluating keel bone damage so that future results will be comparable.  Petrik et al studied only keel fractures. The second recommendation was to investigate the kind of event or bird activity that results in keel damage.  In non-cage systems, collisions with other birds and with furniture and equipment are thought to be some of the factors.  However, even in conventional cages, keel damage occurs, but the reasons are not known. Another unknown is whether initial deviation or distortion of the keel, from whatever cause, may result in keel fracture. Do birds reared in different environments have different potential for keel bone damage in adult life?  This is yet another unanswered question.  Growing birds in an environment where wing flapping is encouraged is thought to improve locomotor skills and thus may avoid some of the (also largely unknown) challenges that result in keel damage. In non-cage laying systems, individual birds as well as groups may display escape reactions to events that result in panic or fright. This can result in keel bone damage.  These events may result from management activities and are thus susceptible to variation and potential improvement, but they must first be identified and studied. As with any, even imprecisely measured, characteristic, there is always the question of a genetic influence.  Interestingly, these 21st century scientists managed to find a study reported in 1955 showing that the tendency to develop keel deformity could be altered by genetic selection. Whether the methods used in this selection experiment would be relevant to contemporary keel damage observations would need to be confirmed. If genetics is involved, can nutrition also play a part in affecting keel bone damage?  The answer to this question is, of course, related to how nutrition influences bone development and maintenance.  And this in turn may be related to the interactions involved in egg shell deposition and bone integrity.  The likelihood of direct involvement of calcium balance as it affects shell deposition and keel bone integrity is probably low.  This is because the calcium flow from bones to the egg shell gland is from the long bones and not the keel. There are large differences in keel fracture incidence between housing systems and even within similar systems.  Perches, although considered desirable from a welfare standpoint, seem to result in elevated keel damage and fracture.  But different materials used for perches result in widely variable keel damage.  Round metal perches seem to be inferior to other designs.  Petrik et al’s work in Ontario compared keel fractures in conventional cages with single tiered floor housing and found almost double the incidence in the floor systems. The final recommendation from the Harlander-Matauschek paper in to investigate and quantify keel bone damage and production losses.  A new report (as yet unpublished) shows that birds with keel fractures laid eggs with reduced shell breaking strength.  This would represent a serious challenge if confirmed.  The fact that most of the keel fractures appear to occur during the period of peak egg production would suggest that the nutrient status of the affected birds is inadequate to support both maximum egg production and bone maintenance.  The inadequacy must be minimal though, since many flocks continue to lay at or near peak level for many months and if keel damage is compromising productivity, its effect must be very small. In reading this research, one can sense the authors’ frustration at the lack of clear information. Obviously, much more research is needed before industry would be able to take firm action to deal with this problem.    
Research from the University of Saskatchewan shows that the impact of beak trimming poultry at a young age, if done properly, is minor. This is compared to the greater impact on flock welfare of not trimming. Researchers globally have studied the impact of beak trimming and beak trimming methods, as this practice has been criticized for its impact on bird welfare. “Research in our lab and labs of others have found that when beak treatment is performed appropriately, with proper techniques and at young ages, the negative impact of the treatment itself is relatively minor in comparison to the larger animal welfare concern of feather pecking and cannibalism,” writes Dr. Karen Schwean-Lardner in a report about the project.   In terms of beak treatment she explains that infrared beak treatment (IRBT) birds are less impacted from a welfare perspective than birds treated with hot blade trimming. She adds that there is some suggestion that using IRBT does not seem to affect all strains of birds in the same way, particularly white versus brown feathered strains A research team led by Schwean-Lardner and Dr. Henry Classen has recently completed a three year project which addresses questions regarding the need to adjust IRBT settings for specific bird breeds.   The team worked with  two white and two brown feathered commercial strains of laying hens. Their work  looked specifically at beak morphology differences between the strains, and aimed to determine the impact of variation in IRBT settings on beak characteristics, healing and re-growth, production and welfare.   “It is imperative to establish guidelines for infrared treatment use that result in the benefits producers expect, while maintaining the welfare qualities of this procedure.” In their report, Classen and Schwean-Lardner describe the main findings of the research team: “IRBT settings should be adjusted for specific conditions, including strain, but it also suggests that some variation in treatment settings does not have important welfare or production effects.”   They went onto explain: “The effects of IRBT are short-lived and minor, and likely a reaction to the treatment and beak sloughing. The nature of beak sloughing due to treatment was quite different and the effect was strain specific. However, despite these differences, growth and production later in life were unaffected.” “This research will hopefully produce consensus on the value of the technique, and will also refine the technique to permit ever increasing success in beak growth in an animal welfare appropriate way.” This research was funded by the Poultry Industry Council.  The research team would like to thank  Clark’s Hy-line Inc., Brandon Man. for allowing them to work in their facility.
August 31, 2015 – A sold-out crowd of 250 gathered at War Memorial Hall at the University of Guelph on August 27 to hear world-renowned animal behaviourist Dr. Temple Grandin give a keynote presentation. Dr. Grandin addressed the audience for an hour, talking on the subject of how different minds solve problems. She then met with attendees at a reception following her presentation. Dr. Grandin is an inspiration to people with autism for her work as an animal behaviorist. Dr. Grandin has developed humane livestock handling systems, and has worked as a consultant to the livestock handling industry on animal care standards. She has, in addition, designed processing facilities in which half the cattle in the United States are handled while working for Burger King, McDonalds, Swift and others. Dr. Grandin was in Ontario assisting with the Professional Animal Auditor Certification Organization training (PAACO). The organization’s mission is to promote the humane treatment of animals through education and certification of animal auditors. Dr. Grandin was named by Time Magazine as one of 2010’s “100 most influential People in the World”. HBO also produced the award-winning biographical film on her life entitled Temple Grandin. She currently speaks around the world on both autism and animal behaviour. The event was organized as a fundraiser for Farm & Food Care Canada. The charitable organization, based out of Guelph, cultivates appreciation for food and farming by connecting Canadian farm gates to our dinner plates. Farm & Food Care is a coalition of farmers and associated businesses proactively working together with a commitment to provide credible information and strengthen sustainable food and farming for the future. For more information on the initiatives of Farm & Food Care Canada, please visit www.farmcarefoundation.ca.
April 4, 2017, Edmonton, Alta – The popular University of Alberta (U of A) Heritage Chicken program is here once again, offering small flock enthusiasts the chance to order heritage chicks until April 19. “Heritage chicks are vaccinated and hatched at the U of A’s Poultry Research Centre,” says Jesse Hunter, program coordinator. “This year, we’re offering Plymouth barred rock, brown leghorn, random bred broiler 1978, light Sussex and Rhode Island red chicks. We hatch a certain number of each breed every year, so check the website to order your favorite breed before they're gone.” Heritage chicks must be pre-ordered on the Heritage Chicken website, and will be available for pick-up at local Peavey Marts across Alberta. Up to 20 day-old chicks cost $8 each, 21-100 are $6, and 101-500 are $4. As part of the program, two small flock workshops are being held, April 12 in Spruce Grove and April 13 in Red Deer, and run from 5:00 to 9:00 p.m. Food and refreshments will be provided. “The workshops are an opportunity to learn about biosecurity, housing, nutrition, disease identification, behaviour, anatomy, and more,” says Hunter. “To register for one of the workshops, go to Eventbrite.” Register for Spruce Grove Register for Red Deer The Heritage Chicken program was established in 2013 to conserve multiple heritage chicken breeds housed at the University of Alberta Poultry Research Centre. The program gives people the opportunity to adopt a chicken and receive a dozen farm fresh heritage eggs every two weeks. All proceeds from the sales are donated back to the Poultry Research Centre to maintain the heritage chickens.
The Poultry Industry Council (PIC) funded several research projects in 2016.  The following project addresses the layer sector of the poultry industry directly. Grégoy Bédécarrats and his research team from the University of Guelph will be performing research which investigates the control of reproduction in poultry, within the context of a continuously evolving genetic makeup. HPG axisSpecifically, the study will seek to reveal whether intensive genetic selection of commercial layer chickens has impacted control of the reproductive or HPG axis. HPG axis refers to the hypothalamus, pituitary gland, and gonadal glands as a single system because these glands often act in concert.In an interview, Bédécarrats described recent research in which he observed that modern strains of layers no longer fully fit the accepted neuroendocrine models.  He hypothesized, “While doubling egg numbers laid per hen, the past 50 years of genetic selection may have altered the normal physiological controls.”  Key questionsBédécarrats highlighted the key questions being formulated through recent analysis of commercial layers, “Why do they tend to mature without stimulation?  Why do they display extended laying persistency?  Is there desynchronization of the ovulatory process?”Purpose of the strainThe proposed research aims to answer these questions by comparing a strain not selected for egg production versus a modern commercial strain selected for egg production.    The approach is to compare production parameters and relate these to molecular events.  Differences in the function of the HPG axis between the two strains will be identified.  Bédécarrats explains “Identifying differences between strains will give insight into the understanding of the actual mechanisms responsible for maturation, ovulation and persistency of lay.  This will show how genetic selection may have impacted the reproductive axis.” Study objectivesThe initial objective of the study will be to determine the relative importance of photostimulation versus metabolic status to initiate sexual maturation in commercial layers.  The study will then go on to investigate if a previously observed second estradiol peak is specific to modern commercial strains and correlated with laying persistency.  The study will conclude by determining if the second estradiol peak is the result of activation of the entire reproductive axis as opposed to independently ovarian activation. Outcomes“Outcomes of this research will assist in adjusting and/or refining on-farm management procedures and could help update codes of practice as it relates to layer flock turnover,” Bédécarrats said. This research is funded by the Natural Sciences and Engineering Research Council of Canada’s Discovery Program and the Ontario Ministry of Agriculture, Food and Rural Affairs - University of Guelph Research Program.
Any method to preserve a species’ genetics is complex and costly. For poultry, raising generation after generation of a certain group of birds is one method, but because those who have been doing this don’t really receive any benefits that outweigh the costs, many are not continuing with it. In addition, relying on live flocks as a way to preserve genetics is also quite risky because something like a disease outbreak or a fire could always come along and cause the DNA to be lost forever.A solution is therefore needed, preferably one that allows for the preservation of as much avian genetic diversity as possible. This will allow for genes from heritage breeds to be fully examined and characterized – genes which may hold great future promise in commercial breeding in terms of important traits like resistance to disease. American geneticist Dr. Janet Fulton has already demonstrated that there are some genes present in heritage poultry breeds that are not present in commercial breeds, and some of this heritage DNA (very much at risk of being lost at this point in time) may become crucial in future commercial poultry breeding enhancements. But how is a central, efficient and secure way to preserve poultry genes to be developed? Cryopreservation (slow freezing) was tried because it works for mammalian sperm, eggs, embryos and more. But it turned out that cryopreservation of avian sperm significantly lowers its ability to fertilize eggs, and avian sperm doesn’t contain the entire bird genome anyway. While avian embryonic cells do, cryopreservation doesn’t work with them either. Finding a reliable way to preserve poultry genetics is also challenging because of the trickiness involved with manipulating bird eggs and sperm, explains Dr. Carl Lessard, curator of the Canadian Animal Genetic Resources program (CAGR) at the University of Saskatoon in Saskatchewan. “What’s required is to open a small spot in an egg shell and deposit desired embryonic cells into the host embryo without killing it,” he notes. “That’s very difficult. So, while freezing embryonic blastodermal cells is a good way to preserve the entire genome of a species, it just doesn’t allow for easy usability of that genome in poultry.”  In 2006, Dr. Fred Silversides (now retired from Agriculture and Agri-Food Canada) tried some new thinking. What about preserving the gonadal tissue (testicular and ovarian tissue) where sperm and eggs are created and stored? Might it be possible to develop a relatively efficient way to remove gonads, chill and store them, and then thaw and transfer them, resulting in the hatching of a chick with the desired genetics and not any from the surrogate mother hen?  Instead of the slow freezing involved with cryopreservation, Silversides tried vitrification, where a gonad is removed from a day-old chick, treated with lots of cryoprotectant and chilled rapidly through a plunge in liquid nitrogen. The gonad is never technically frozen (there’s no ice crystal formation) but maintained in a glass-like (vitreous) state at a very low temperature. Once thawed, the gonad is surgically transferred to a day-old chick recipient that has had its gonad totally or partially removed. At the same time, Silversides and his team developed ways to preserve the viability of the tissues during and after thawing and transplantation, such as treating the recipient chick with immunosuppressants to avoid rejection of the graft.Success was achieved! Over time, the work of Silversides and his colleagues at AFFC was transferred to CAGR, where Lessard became curator in 2014. Since that point, Lessard and his team have been working hard to move all aspects of poultry genetics preservation forward.   View the embedded image gallery online at: https://www.canadianpoultrymag.com/index.php?option=com_k2&Itemid=74&lang=en&layout=latest&view=latest#sigProGalleriae0a889fb63 What’s happening nowThe technique for chicken testicular tissue is now well-established, and Lessard and colleagues are currently optimizing Silversides’ technique for ovarian tissue. “The ovarian grafts are not growing the way we need them to, so we are now trying to find a new chicken line recipient,” Lessard explains. “The bird line we were using likely has an immune response that’s too high. We didn’t see this with the testicular tissue grafts in that line.”With turkeys, Lessard has established a reliable protocol for freezing gonads from newly-hatched chicks, with the next step to optimize the surgical procedures and immunosuppressive treatment to obtain successful growth of the grafts. In terms of the team’s preliminary genetic analysis, they’ve found turkey breeds have a lot of genome ‘admixture’ (many shared genes alleles between breeds), but more samples are needed to confirm this finding. Shared alleles, says Lessard, make it harder to characterize the entire genetic diversity of turkeys and establish what is, and what is not, pure turkey genetics. Once vitrification of male and female gonadal tissue for chicken and turkeys is complete, the team will launch a national call in 2017 to request genetic samples of fertilized eggs from commercial and heritage breeds. They will also move on to other poultry breeds such as ducks.Lessard and his colleagues are also creating a germplasm repository (sperm, eggs, gonads, embryos) for other types of livestock from all across Canada. “We are looking for donations from purebred animals in all areas of the country,” he says, “including bison, cattle, sheep, goat, horse, pig, deer, elk and more. It’s going well, and we’re getting more and more participation from livestock associations and individual producers. Right now (in September and October 2016), we are in Ontario and Quebec gathering samples from sheep, goat and beef cattle.” A website letting the public know what has been contributed is being developed and Lessard is looking for more Canadian and international graduate students to tackle all the work. “We need many samples for poultry and everything else produced in Canada,” he explains. “Genetic characterization of commercial and heritage poultry breeds is extremely important and we need to establish the true diversity of the different poultry breeds produced here. The number of heritage breed birds is shrinking every year, and it’s very important to capture genetics as soon as possible.” Silversides’ vitrification preservation technique has so far been adopted by the United States Department of Agriculture ‘Agricultural Research Service’ Germplasm Resources Information Network (GRIN). Lessard says individuals at that organization have already used the technique to preserve the genetics of several U.S. commercial and heritage breeds. In terms of other groups beyond CAGR working on gonadal transfer, a team in Hungary is currently working to master it. To make is easier for them and other researchers around the world learn how to successfully complete surgical transfer of vitrified gonads, Lessard has been working on a free tutorial e-book featuring detailed video and audio descriptions of each step. “This strategy (vitrification and gonadal transfer technique) has great potential to preserve the entire genome of a poultry breed and also use that genome fairly easily,” he explains. “We want it to be available to everyone.”
July 18, 2016 - The genes of some chickens make them almost completely resistant to a serious strain of bird flu, new research has revealed. The findings, which are published in the journal Scientific Reports, show that genetics play a key part in whether the birds are susceptible or resistant to the potentially deadly virus. READ MORE 
Study using genetic lines of Virginia Tech chickens reveals evolution happens faster than previously thought November 4, 2015 - A critical component of an experiment that proved evolution happens 15 times faster than was previously believed relied upon genetic lines of chickens from Virginia Tech. The discovery utilized the DNA of lines of White Plymouth Rock chickens that have been developed for more than 50 years. The research was published recently in Biology Letters, a journal of Royal Society Publishing. The discovery involved researchers from several universities, including the University of York, Oxford University, the University of Sydney, Uppsala University, the Swedish University of Agricultural Sciences, and Virginia Tech. “This experiment and many others involving everything from animal appetites to genetics could never have been done without the pedigree lines here at Virginia Tech,” said Siegel, distinguished professor emeritus of animal and poultry sciences in the College of Agriculture and Life Sciences.  “This experiment was also an excellent example of international collaboration between six countries that was necessary for the success of the study.” Siegel, along with Ben Dorshorst and Christa Honaker, also in the Virginia Tech Department of Animal and Poultry SciencesDepartment of Animal and Poultry Sciences, were co-authors on the paper. The pedigree lines of White Plymouth Rock chickens were developed by Siegel, who began breeding them in 1957. From the common founder population, he produced two distinct lines of chickens selected for high- and low-body weight. Today, the high-weight line dwarfs its low-growth counterpart by an average of 12 times more by the time they reach the eight-week selection age. In the latest experiment, researchers analyzed blood samples of chickens of the same generation using the most distantly related maternal lines to reconstruct how the mitochondrial DNA passed from mothers to daughters. Mitochondria are specialized structures in the cells of animals, plants, and fungi that generate energy, synthesize proteins, and package proteins for transport to different parts of the cell and beyond. Previously, estimates put the rate of change in a mitochondrial genome about 2 percent per million years,” Greger Larson, professor of archaeology at Oxford University, said in a news release. “At this pace we should not have been able to spot a single mutation in just 50 years, but in fact we spotted two.” The sampling scheme yielded 385 mitochondrial transmissions that were analyzed for linkages within the mitochondrial DNA. The rate of evolution was calculated by analyzing the number of observed mutations in the approximately 16,000 samples of mitochondrial DNA in the genome over 47 generations. The scientists then reconstructed the maternal pedigree based on the mitogenome sequences. “Our observations reveal that evolution is always moving quickly, but we tend not to see it because we typically measure it over longer time periods,” Larson said in the news release. “Our study shows that evolution can move much faster in the short term than we had believed from fossil-based estimates.” The experiment also determined that mitochondria are not solely passed down from maternal lines. Strictly maternal inheritance has long been thought of as the characteristic of mitochondrial genomes. “The thing everyone knew about mitochondria is that it is almost exclusively passed down the maternal line, but we identified chicks who inherited their mitochondria from their father,” said Michelle Alexander, lead author. This finding supports the theory that “paternal leakage” is not such a rare phenomenon. This is not the first time the scientific community has benefited from the research done on Virginia Tech’s high- and low-body weight chicken lines. A 2010 article in the scientific journal "Nature" highlighted a breakthrough in genetic studies of animal domestication, thanks in part to these two lines. In 2010, the American Poultry Historical Society inducted Siegel into the American Poultry Association Hall of Fame, the industry’s top honor. In 2011, he was given an honorary doctorate from the Swedish University of Agricultural Sciences.    
August 27, 2015 - Aviagen has announced it will continue its contribution to the Canadian Poultry Research Council (CPRC) through the CPRC’s Research Sponsorship Program.  Aviagen has presented the CPRC with a check for $25,000 in support of the program. This check represents the fourth in a series of annual sponsorships contributed to the CPRC since 2012, qualifying Aviagen as a Platinum sponsor of the program.  Established in 2001, the CPRC creates and implements programs for poultry research throughout Canada. The goal of the CPRC’s research is to effect discoveries that lead to improved food safety through enhanced poultry nutrition. The programs also focus on heightened environmental safety measures.  “The CPRC has made invaluable contributions to the success of Canada’s poultry industry. Vast components of the poultry value chain stand to benefit from the research conducted by the CPRC, including producers, feed suppliers, animal health care companies, processors, distributors and ultimately, consumers,” explains Scott Gillingham, Canadian  Regional Business Consultant for Aviagen. “Aviagen is proud to support the organization’s research efforts and we look forward to continued collaboration in the future.”  CPRC Executive Director Bruce Roberts, Ph.D., says he values Aviagen’s support of the council. “Aviagen has helped fund 29 projects, enabling us to address critical issues such as poultry welfare, alternatives to the use of antimicrobials in poultry production, poultry health food safety and the environment,” adds Roberts. “As a premier sponsor of the program, Aviagen assists the CPRC not only financially, but also through cooperation and sharing of ideas and expertise. In addition to its value add to the CPRC, Aviagen supports Canadian university research activities outside of the CPRC. For these reasons, Aviagen should be commended for its strong commitment to advancing the poultry industry on a global basis.”  Roberts concludes that efforts are currently underway for considerable future marketing and expansion of the CPRC’s Research Sponsorship Program.
May 19, 2017, Waterloo, Ont. - Farmers know the importance of keeping the land, water and air healthy to sustain their farms from one generation of farm family to the next. They also know that a clean environment and a strong economy go hand-in-hand.The Honourable Bardish Chagger, Leader of the Government in the House of Commons and Minister of Small Business and Tourism, today announced a $1.9 million investment with the University of Waterloo to examine greenhouse gas (GHG) emissions associated with agricultural activities and the potential benefits of alternative land use practices and beneficial management practices (BMPs).This project with the University of Waterloo is one of 20 new research projects supported by the $27 million Agricultural Greenhouse Gases Program (AGGP), a partnership with universities and conservation groups across Canada. The program supports research into greenhouse gas mitigation practices and technologies that can be adopted on the farm.
May 16, 2017, Lancaster, PA - Farmers have been referred to as the first environmentalists. Their livestock and crops depend on a healthy environment to thrive. Still, there’s often room for improvement.According to some early findings from a study by Penn State graduate student Erica Rogers, poultry producers are potentially lowering their impact on the Chesapeake Bay.Rogers and fellow Penn State graduate student Amy Barkley discussed those initial findings from their two master’s thesis projects with the poultry service technicians attending Monday’s Penn State Poultry Health and Management Seminar at the Lancaster Farm and Home Center.Her project’s goal is to accurately depict poultry’s contribution to the Chesapeake Bay Total Maximum Daily Load. The Chesapeake Bay “is one of the most studied watersheds in the world,” she said, but the problem with the current model is “they are using outdated information for poultry.”Rogers built her work around the concept that poultry litter management has changed and farmers have adopted more precise diets for their flocks. READ MORE
May 8, 2017, Africa - One strategy for dealing with poultry poop is to turn it into biofuel, and now scientists have developed a way to do this by mixing the waste with another environmental scourge, an invasive weed that is affecting agriculture in Africa. They report their approach in American Chemical Society’s journal Energy & Fuels. Poultry sludge is sometimes turned into fertilizer, but recent trends in industrialized chicken farming have led to an increase in waste mismanagement and negative environmental impacts, according to the United Nations Food and Agriculture Organization.Droppings can contain nutrients, hormones, antibiotics and heavy metals and can wash into the soil and surface water. To deal with this problem, scientists have been working on ways to convert the waste into fuel. But alone, poultry droppings don’t transform well into biogas, so it’s mixed with plant materials such as switch grass.Samuel O. Dahunsi, Solomon U. Oranusi and colleagues wanted to see if they could combine the chicken waste with Tithonia diversifolia (Mexican sunflower), which was introduced to Africa as an ornamental plant decades ago and has become a major weed threatening agricultural production on the continent.The researchers developed a process to pre-treat chicken droppings, and then have anaerobic microbes digest the waste and Mexican sunflowers together. Eight kilograms of poultry waste and sunflowers produced more than 3 kg of biogas — more than enough fuel to drive the reaction and have some leftover for other uses such as powering a generator. Also, the researchers say that the residual solids from the process could be applied as fertilizer or soil conditioner.The authors acknowledge funding from Landmark University (Nigeria).
Sept. 20, 2016 - Ontario farmers are invited to safely and responsibly dispose of their unwanted or obsolete pesticides and livestock (including equine) medications from Sept. 20-30. This collection program is offered at no cost to Ontario farmers.  CleanFARMS, an industry-led, national not-for-profit agricultural waste management organization partnered with the Canadian Animal Health Institute (CAHI) and the Ontario Ministry of Agriculture, Food and Rural Affairs to co-fund the disposal program with support from CropLife Canada, Ontario Agri Business Association, Farm & Food Care Ontario, and the Ontario Fruit & Vegetable Growers' Association, in offering this free program."Ontario farmers are environmentally conscious and are pleased to partner with CleanFARMS to safely dispose of obsolete pesticides and livestock medications," says Craig Hunter from the Ontario Fruit and Vegetable Growers Association. "The CleanFARMS collection program provides an excellent one-stop service for Ontario farmers to continue to protect the land."Farmers in Ontario have a long history of good stewardship practices. Since 1998, Ontario farmers have turned in more than 500,000 kilograms of obsolete pesticides."Ontario has a history of successful collections," says Barry Friesen, General Manager of CleanFARMS. "The participation of Ontario farmers shows they are good stewards of their land and committed to protecting the environment."After collection, the pesticides and livestock medications are taken to a licensed waste management facility where they are disposed of through high temperature incineration.The following locations will be accepting obsolete pesticides and livestock/equine medications from 9 a.m. until 4 p.m. on the dates specified:Tuesday, Sept. 20Brodhagen - Hoegy's Farm SupplyGuelph - Woodrill FarmsGlencoe - Parrish & HeimbeckerWednesday, Sept. 21Brussels - Brussels AgromartAilsa Craig - Hensall District Co-opAylmer - Max Underhill's Farm SupplyThursday, Sept. 22Beamsville - NM BartlettForest - Lakeside Grain & Feed LtdKitchener - GROWMARK IncMonday, Sept. 26Bothwell - Hagerty CreekAlliston - Alliance Agri-TurfTara - Sprucedale AgromartNew Hamburg - Good Crop ServicesLancaster - Munro's AgromartTuesday, Sept. 27Tupperville - Agris Co-opWellandport - Clark AgriServiceBradford - Bradford Co-opWalkerton - Huron Bay Co-opAlfred - SynagriWednesday, Sept. 28Paincourt - South West Ag PartnersPrinceton - CargillOakwood - Oakwood Ag CentreHarriston - CargillCasselman - Agro Culture 2001Thursday, Sept. 29Blenheim - ThompsonsBolton - Alliance Agri-TurfTrenton - TCO AgromartDundalk - Huron Bay Co-opRichmond - SynagriSept. 27-29Verner - Verner Ag CentreGore Bay - Northland AgromartPembroke - M&R Feeds and Farm SupplyArnprior - M&R Feeds and Farm SupplyThornloe - Temiskaming Ag CentreThunder Bay - Thunder Bay Co-opFriday, Sept. 30Courtland - CargillOrangeville - Holmes AgroPicton - County Farm CentreLeamington - Agris Co-opChesterville - SynagriFor more information, please call CleanFARMS at 877-622-4460 or visit www.cleanfarms.ca
September 15, 2016 - The Government of Canada has announced an investment of $10 million over seven years to bring one of the world's most respected experts in food security to  Canada. A recognized leader in crop adaptation to marginal soil environments, Leon Kochian will become the Canada Excellence Research Chair (CERC) in Food  Systems and Security at the University of Saskatchewan.  The United Nations estimates the world's population will reach 9.7 billion by 2050. Ensuring sufficient nutritious food will therefore be one of the greatest  challenges facing humanity in the 21st century. Working out of the university's Global Institute for Food Security, Kochian will lead a multidisciplinary team  to unlock the secrets of a plant's "hidden half"-the root system-an unexplored aspect of plant breeding.  His research will develop new root-based approaches to crop improvement that will enable breeding for improved root system structure and function, producing  new varieties with higher yields and greater capacity to thrive in difficult conditions. Kochian will identify and map the genes linked to root system  traits that are specifically responsible for nutrient and water uptake under drought conditions. He anticipates this research will enable increased crop  production in less fertile areas.  Leon Kochian is the University of Saskatchewan's second CERC after Howard Wheater, Canada Excellence Research Chair in Water Security. He becomes the country's 27th CERC.  In total, Leon Kochian's research will receive support worth almost $21 million. The Government of Canada is also providing $800,000 through the Canada Foundation for Innovation. The balance will be invested by the Global Institute for Food Security ($7 million) and the University of  Saskatchewan ($3 million).   
  Fifty years of sustainability analysis and insight – that is what Egg Farmers of Canada (EFC) recently commissioned Canadian consulting firm Global Ecologic to produce. The report is entitled: “Environmental Footprint of Canadian Eggs: 1962 versus 2012.” EFC CEO Tim Lambert says the study results demonstrate the way Canadian egg farmers have been, and still are, constantly looking for new ways to make egg production more efficient and environmentally sound. “While egg production increased by more than 50 per cent between 1962 and 2012 [from about 43 million dozen to 66 million dozen eggs per year],” he notes, “the industry’s overall environmental footprint decreased across all emissions and resource use domains.” Indeed, Nathan Pelletier (president of Global Ecologic) found the average environmental impact for eggs produced in conventional housing systems in 2012 was roughly one-third of what it was in 1962. To begin the study, Pelletier identified the average conditions that existed in the egg production supply chains of 2012 and 1962, and measured supply chain water, land and energy use, as well as greenhouse gas, acidifying and eutrophying emissions. For this, he relied on recent environmental life cycle analysis done for EFC that outlined the state of the industry in 2012, and also drew from various sources to gain insights into the realities of 1962. Taking these conditions, uses and emissions, he then evaluated the resource and environmental performance gains linked to specific advancements over the past five decades, differentiating between changes attributed to supply chain versus farm-level activities.  However, any study that involves gathering and analyzing data from decades ago has potential challenges. “Important to conducting an analysis such as this is to know in advance which variables really matter, and to focus data collection activities accordingly,” Pelletier explains. “For example, having previously evaluated contemporary egg production systems in both the US and Canada, as well as a variety of other livestock production systems, I knew that gathering representative data for variables such as feed composition, feed conversion efficiency, rate of lay, and mortality rates in the early 1960s would be quite important for the overall results. Fortunately, 1960s data for these variables are available in peer-reviewed literature, Canadian random sample egg production test data and from Statistics Canada.” Pelletier also found good information on such factors as fertilizer production, and inputs and yields for feed production.  Pelletier found that compared to 1962, Canadian egg industry acidifying emissions (those that cause acidification of freshwater systems, such as sulfur dioxide and nitrogen oxides) of 2012 were a whopping 61 per cent lower. Eutrophying emissions (those that lead to excessive nutrients in waterways, resultant explosive plant growth such as algal blooms and death of animal life due to lack of oxygen; sulfur dioxide, nitrogen oxides and ammonia) were even lower (68 per cent). Greenhouse gas emissions were 72 per cent lower. The energy, land and water use in the entire supply chain decreased by 41, 81 and 69 per cent respectively. Pelletier notes the Canadian egg industry was in transition to cage-based production during the 1960s, and explains that the specific mix of housing systems does not really matter for an analysis such as this. “What is important are hen performance data (e.g. rate of lay, mortality, etc.), whatever the housing system employed. Quite good data are available for these variables.” Reasons for improved  performanceAs you can imagine, the Canadian egg industry’s much-diminished environmental footprint compared to fifty years ago is due to several factors. The most important of these is changes, for both layer and pullet feeds, in feed composition, feed conversion efficiency, and the environmental footprints of specific feed inputs. Layer feeds in 2012 had, on average, just 38 per cent of the overall environmental impact of those of 1962, and pullet feeds 69%. This is because the average impact per tonne of production of feed ingredients improved, such as a 43 per cent decrease for corn in 2012 compared to 1962. It’s also because general inputs for field crops also dropped. Pelletier found, for example, that the energy required for ammonia synthesis (used to make nitrogen fertilizer) was cut by half over the study period. Improved crop yields and higher fuel efficiencies in freight transport also contributed. In addition, the amount of meat/bone/feather meals and fats in feed has dropped over the last 50 years, and these inputs have a much higher environmental impact compared to ingredients whose use has risen over the decades, such as soy meal. Other important industry improv-ements include improved animal health and higher productivity in pullet and egg production. Production per hen has improved by almost 50 per cent and feed conversion efficiency by 35 per cent, while the combined mortality rate for pullets and layers declined by 63 per cent. Energy use, however, was the least improved factor, and Pelletier says this is because current energy production involving fossil fuels requires more input energy (for extraction and processing, etc.) than it did 50 years ago. “Without the changes we’ve seen in feed composition and efficiencies at the level of pullet and egg production,” he notes, “contemporary egg production would be considerably more energy intensive, simply due to the declining efficiency of fossil energy provision over time.” U.S. resultsSeveral years ago, Pelletier and colleagues from other organizations conducted a similar 50-year comparison of life cycle environmental impacts for egg production in the U.S. (1960 compared to 2010). Feed efficiency was the biggest factor. “The feed conversion ratio for egg production improved from 3.44 kg/kg in 1960 to 1.98 kg/kg — a gain of 42 per cent,” he notes. “Nonetheless, achieving feed use efficiencies comparable to the best performing contemporary facilities [the range reported by survey respondents was 1.76-2.32 kg/kg] industry-wide would do much to further reduce overall impact.” As it has in Canada, differing feed composition has also played an important role in reducing impacts — in particular, both reduction in the total amount of animal-derived materials used, as well as increased use of porcine and poultry materials in place of ruminant materials.   Overall use of studyPelletier sees several uses to which the study results can be put. “First, they help us to understand the relative importance of specific variables in changing the environmental footprint of Canadian egg production,” he notes. “This knowledge will inform future efforts to continue to improve the sustainability of Canadian eggs in terms of priority areas for targeted management initiatives.” The results, in Pelletier’s view, also provide valuable benchmarks. He says looking forward individual producers as well as the industry as a whole will be able to measure their sustainability performance and track their progress relative to these benchmarks. Finally, the study results provide solid evidence of the progress that the Canadian industry has achieved. “The results are also a source of inspiration for the future,” Pelletier says. “When I think about what has been accomplished over the past 50 years, I’m excited to imagine what will be possible over the next 50! The next steps, I believe, are for the industry to collaborate in defining a sustainability agenda, along with metrics, targets and milestones for sustainability initiatives looking forward.” Lambert agrees. “Egg Farmers of Canada is becoming recognized as a global leader in agriculture for its commitment to society through its sustainability initiatives and dedication to social responsibility,” he says. “This 50-year study provides a firm foundation for the industry’s sustainability initiatives going forward, setting out benchmarks by which we can continue to measure progress. Understanding the components of the industry’s environmental footprint ensures that we can work with our producers and stakeholders to make sound, sustainable choices for the future.” Percentage change in Canadian egg production from 1962 to 2012, per tonne of eggs produced Acidifying emissions 61% lower Eutrophying emissions 68% lower GHG emissions 72% lower Energy use 41% lower Land use 81% lower Water use 69% lower Feed conversion rate 35% increase Production per hen housed 50% increase Mortality rate (pullets) 21% lower Mortality rate (layers) 75% lower Percentage change between 1962 and 2012, industry-wide Acidifying emissions 41% lower Eutrophying emissions 51% lower GHG emissions 57% lower Energy use 10% lower Land use 71% lower Water use 53% lower Egg production 51% higher    
May 18, 2017, Adelaide, Aus. - People choose to buy free-range or cage-free eggs because they believe they taste better and are better quality than eggs from caged hens, new research published today suggests.In a study, conducted by researchers at the University of Adelaide and published in Anthrozoös, the journal of the International Society for Anthrozoology, the most often reported motivations for buying free-range eggs included reasons such as the eggs were of better quality, more nutritious, and safer to eat, and that they allowed purchasers to avoid “industrialized” food.Despite participants describing caged-egg production as “cruel”, they did not tend to emphasize welfare reasons as critical for their purchases of free-range eggs. Instead, participants felt that the free-range chickens were “happier” and thus produced a better quality of product.This finding suggests that consumers are more likely to purchase a food product if it is both “ethical” and viewed as being of better quality, rather than for ethical reasons alone.The study also revealed that there were high levels of awareness among participants of caged-egg production when compared to other types of animal farming.In addition, participants who bought free-range or cage-free eggs did not necessarily tend to buy meat with ethical claims, in part because the price difference is much smaller in eggs in comparison to different types of meat products. Some people produced their own free-range eggs by keeping a few hens.To collect the data for the study, the researchers conducted focus groups and shopping mall interviews with 73 participants (of mixed age and gender) and asked about their food purchasing habits.Then they categorized the different reasons that people gave for their decisions to understand why people choose the food they do, especially when there are ethical issues and competing values involved.Lead author Dr. Heather J. Bray from the School of Humanities and the Food Values Research Group at the University of Adelaide commented, “Taste and quality are strong motivations for purchasing and may be part of the reason why people are prepared to pay a higher price. More importantly these findings suggest that consumers think about animal welfare in a much broader way than we previously thought, and in particular they believe that better welfare is connected to a better quality product.”The authors recommend that more research is needed including studies to further understand consumer motivations behind purchasing products with ethical production claims, in order to explore whether changes in production methods or labelling would be supported by consumers.This work was funded by the Australian Research Council. Read the full article online: http://www.tandfonline.com/doi/full/10.1080/08927936.2017.1310986
May 5, 2017, Toronto, Ont.- A recent national survey revealed 70 per cent of Canadian mothers are unaware that babies six to 12 months need 11 mg of iron per dayi – that's nearly 40 per cent more than is required of a full-grown man.The startling statistic was uncovered just in time for World Iron Awareness Week taking place May 1-7 to encourage education and understanding surrounding the importance of iron consumption at every age and stage.The Canada-wide infant feeding survey was commissioned to help inform parents how and when to introduce babies to iron-rich foods.Based on survey findings, Canadian moms are seeking infant feeding information from a wide variety of sources including doctors and pediatricians, online resources, baby care books, magazines and of course, friends and family.While moms of infants are aware that iron is an essential nutrient, there is confusion surrounding when parents should be introducing iron-rich solid foods like meat into their baby's diet.In 2012, Health Canada released new guidelines advising parents to offer their six-month old infants meat, fish, poultry or meat alternatives two or more times a day, on a daily basis.While other foods may offer significant amounts of iron, meat provides our bodies with heme iron – a more easily absorbed variation of the nutrient. Adding meat to a meal also helps absorb up to four times the amount of iron from other foods like green vegetables, bread and cerealsiii.Only about half of moms (55 per cent) surveyed were aware that heme iron found in meats is better absorbed than other dietary iron, or that iron deficiency anemia in infants is associated with irreversible developmental delays (51 per cent).
April 24, 2017, New York, NY- The U.S. government's latest report card on food poisoning suggests that a germ commonly linked to raw milk and poultry is surpassing salmonella at the top of the culprit list.The report counts cases in only 10 states for nine of the most common causes of foodborne illness, but is believed to be a good indicator of national food poisoning trends.The most common bug last year was campylobacter (pronounced: kam-pih-loh-BAK'-tur). It's mostly a problem in unpasteurized dairy products, but also is seen in contaminated chicken, water, and produce. Salmonella was number one for the last 20 years but last year moved down to number two. Other causes like listeria, shigella (shih-GEHL'-uh) and E. coli trail behind.Last year, there were no significant changes in new case rates for most kinds of food poisoning, compared to the previous three years. The new report tallied about 24,000 illnesses and 98 deaths in the 10 states. The CDC estimates that one in six Americans get sick from contaminated food each year, though most cases are not reported.There's been a continued decline in illnesses from what used to be the most common strain of salmonella -- called Salmonella Typhimurium. That's possibly because of vaccinations of chicken flocks and tighter regulations. READ MORE
Chicago, IL, April 10, 2017 – Chicken remains consumers’ protein of choice while turkey shows room to grow, according to Technomic’s recently-released 2017 Center of the Plate: Poultry Consumer Trend Report. Chicken consumption has been bolstered over the past few years by increases at breakfast and snacking occasions. Meanwhile, turkey consumption is still centered on the holidays, though 39 per cent of consumers who eat turkey indicate they are more likely now than two years ago to eat turkey during the rest of the year. “Chicken’s adaptability will be on full display over the next few years as operators increasingly highlight this healthy protein across dayparts”, explains Kelly Weikel, director of consumer insights at Technomic. “For turkey, operators will work to menu this protein in a way that is new and intriguing, but still leverages turkey’s positioning as a familiar and healthy standby.” Key takeaways from the report include: 47 per cent of consumers say it’s important for restaurants to be transparent about where they source their poultry 45 per cent of consumers who eat chicken strongly agree that restaurants should offer more chicken entrees with ethnic flavors 38 per cent of consumers who eat turkey would like restaurants to offer turkey as a protein choice for a wider variety of entrees
The University of Guelph has received $76.6 million from the federal government to start a “digital revolution” in food and agriculture. The government is investing in U of G’s Food From Thought research project, which will use high-tech information systems to help produce enough food for a growing human population while sustaining the Earth’s ecosystems. The funding, announced by Lloyd Longfield, MP for Guelph, on behalf of Kirsty Duncan, minister of science, will come from the Canada First Research Excellence Fund (CFREF), which supports world-leading research at universities and colleges. It’s the largest single federal research investment in U of G history. “This will position Canada as a leader in sustainable food production,” said U of G president Franco Vaccarino, adding the project will help farmers produce more food on less land using fewer inputs. “Our faculty, staff and students will have opportunities to participate in innovative discovery and to play a role in tackling one of the world’s greatest challenges: how to sustainably feed our growing population.” Longfield added: “The University of Guelph has a long history of collaborating across Canada and globally to contribute to understanding complex challenges. The global food supply will require the University’s unique leadership skills that bring together agricultural expertise, big data, environmental science, business and civil society. Today’s funding announcement will give Canada a huge step forward to become a global leader in food.” Food From Thought will create novel tools for producing more and safer food while also protecting the environment. “It is not just how much food we produce but also the way we produce it that will be key in the next century,” said Prof. Malcolm Campbell, vice-president (research), who is the institutional lead for Food From Thought and a plant genomicist in the Department of Molecular and Cellular Biology. New technology and agricultural practices must enhance biodiversity, produce safe, nutritious food, and improve animal welfare and human health, he said. U of G is well-placed to lead this project, Campbell said. “We are Canada’s food university, with a 150-year legacy in agri-food and a reputation for innovation and commitment. We also have the capacity, with world-class researchers and facilities, and strong partnerships with government and industry.” Geography professor Evan Fraser, scientific director of Food From Thought and director of U of G’s Food Institute, said launching a digital revolution will require improved understanding of the complex interplay between farming practices, the genetic potential of our crops and livestock, and the environment. “This is essential if we are to realize the potential offered by our emerging ability to collect vast amounts of data and to develop information management systems,” he said. Food From Thought will bring together experts to generate and commercialize knowledge, and to inform agri-food policy-makers and practices from farm management to global conservation planning. The initiative will offer new teaching and research opportunities, and will focus on training the next generation of agri-food leaders through fellowships and graduate student positions. More than $1 million will be available for annual research awards and competitions intended to develop innovations for sustainable food systems. Within Food From Thought, researchers will work on key scientific missions including: Expanding use of DNA barcoding technology developed at U of G to identify food fraud, food-borne ailments and invasive pests, and to improve environmental impact assessments; Using “big data” on farms to reduce pesticide use, monitor watershed health and identify crops suited to the effects of climate change; and Using information management systems to help track emerging infectious disease threats to livestock and control pathogens in the food supply. Food From Thought includes partnerships with academic institutions around the globe, numerous government agencies, and industry and innovation centres. One key partner is IBM Canada, which will be involved in everything from research collaborations to cognitive and data analytics tools and training to secure cloud-based storage. “IBM shares the scientific vision of Food From Thought: ensuring that we sustainably, resiliently and safely increase production while enhancing ecosystem services and livestock health and welfare using data-driven approaches,” said Sanjeev Gill, research executive at IBM Canada. Food From Thought will be one of U of G’s largest and most inclusive research projects, spanning all seven colleges. It will be led by 10 principal investigators from across campus.This funding announcement was part of a $900-million competition lasting several months and involving a review panel of Canadian and international scientific experts. This is the second CFREF competition since 2014.  
  The revelation that a bacteria resistant to antibiotics of last resort was found in a Pennsylvania woman prompted a flurry of media activity in late May. Increased consumer concern on an already-sensitive topic is understandable in light of such headlines as, “Nightmare Superbug Shows Up in the United States” and “Infection Raises Specter of Superbugs Resistant to All Antibiotics.” The Washington Post conducted a Q&A with an infectious disease doctor at the University of Pittsburgh who tried to put the development into perspective. He said, “While certainly concerning and something to keep a close eye on from a public health point of view, there is no evidence that this is a widespread problem at this time. Even in the rare event that you get sick from this bacteria, there are treatment options available.” Since the bacteria has also been detected in pigs, the Post asked about food safety concerns. The doctor stated there is no risk as long as meat is properly handled and cooked to the recommended temperature. There’s growing consumer concern and rising pressure on the food system about the use of antibiotics in food animals. Antibiotic resistance is a serious issue and one farms and food companies are taking seriously, but the connection between antibiotics used in animals raised for food and the risk of human antibiotic failure is a complex issue not easily distilled for widespread understanding. Several things must happen before resistant bacteria from a farm can affect people: Antibiotic-resistant bacteria must be present in an animal when it leaves a farm The bacteria must survive sanitation steps during the packaging process The meat must be undercooked, enabling bacteria to survive The bacteria must cause human illness The ill person must receive medical attention and the antibiotic therapy must involve the same class of antibiotic used on the farm The patient must get worse or fail to recover due to the resistant infection There’s also the perception that antibiotic resistance results from eating meat containing antibiotic residue, but there are strict federal laws in place to prevent unsafe residues in meat. By law, since the 1950’s, the FDA strictly audits and enforces that unsafe levels of antibiotics may not be present in meat before it enters the food supply. Leading drug companies have recognized the concern about the resistance issue and are making antibiotics available only for treatment and prevention of disease — not growth promotion. Beginning next year in the U.S., antibiotics important to human medicine will only be available under a Veterinary Feed Directive (VFD), which is essentially a prescription from a veterinarian. There are unanswered questions on the link between animal antibiotic use and human resistance and the issue is still being studied. Until those questions are conclusively answered, the best source of information is sound science in the form of peer-reviewed and published studies. Dr. Peter Davies, BVSC, PhD, professor of Animal Science at the University of Minnesota, says, “There are almost no documented clinical cases where antibiotic resistance was unequivocally tied to animal antibiotic use. So while the risk is not zero, in my opinion, it is extremely low.” Animal antibiotics must be used responsibly to minimize agriculture’s contribution to antibiotic resistance. But much of the current discussion about antibiotic use is highly polarized, pitting commercial interests against public health interests. It’s important to remember that preventing disease and treating sick animals through the responsible use of antibiotics is the ethical thing to do. Reprinted with permission from the Center for Food Integrity (CFI).  CFI’s vision is to lead the public discussion to build trust in today’s food system and facilitate dialog with the food system to create better alignment with consumer expectations. For more information, visit: www.foodintegrity.org      

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Crop Life Canada Social Media Training
Tue May 23, 2017 @ 1:00PM - 04:00PM
PIC Human Resources Day
Thu May 25, 2017 @ 8:00AM - 05:00PM
Turkey Academy 2017
Thu Jun 01, 2017 @ 8:30AM - 02:30PM
PIC Poultry Health Day
Thu Jun 15, 2017 @ 8:00AM - 04:00PM