Environment
May 19, 2017, Waterloo, Ont. - Farmers know the importance of keeping the land, water and air healthy to sustain their farms from one generation of farm family to the next. They also know that a clean environment and a strong economy go hand-in-hand.

The Honourable Bardish Chagger, Leader of the Government in the House of Commons and Minister of Small Business and Tourism, today announced a $1.9 million investment with the University of Waterloo to examine greenhouse gas (GHG) emissions associated with agricultural activities and the potential benefits of alternative land use practices and beneficial management practices (BMPs).

This project with the University of Waterloo is one of 20 new research projects supported by the $27 million Agricultural Greenhouse Gases Program (AGGP), a partnership with universities and conservation groups across Canada. The program supports research into greenhouse gas mitigation practices and technologies that can be adopted on the farm.
May 16, 2017, Lancaster, PA - Farmers have been referred to as the first environmentalists. Their livestock and crops depend on a healthy environment to thrive. Still, there’s often room for improvement.

According to some early findings from a study by Penn State graduate student Erica Rogers, poultry producers are potentially lowering their impact on the Chesapeake Bay.

Rogers and fellow Penn State graduate student Amy Barkley discussed those initial findings from their two master’s thesis projects with the poultry service technicians attending Monday’s Penn State Poultry Health and Management Seminar at the Lancaster Farm and Home Center.

Her project’s goal is to accurately depict poultry’s contribution to the Chesapeake Bay Total Maximum Daily Load. The Chesapeake Bay “is one of the most studied watersheds in the world,” she said, but the problem with the current model is “they are using outdated information for poultry.”

Rogers built her work around the concept that poultry litter management has changed and farmers have adopted more precise diets for their flocks. READ MORE
May 8, 2017, Africa - One strategy for dealing with poultry poop is to turn it into biofuel, and now scientists have developed a way to do this by mixing the waste with another environmental scourge, an invasive weed that is affecting agriculture in Africa. They report their approach in American Chemical Society’s journal Energy & Fuels

Poultry sludge is sometimes turned into fertilizer, but recent trends in industrialized chicken farming have led to an increase in waste mismanagement and negative environmental impacts, according to the United Nations Food and Agriculture Organization.

Droppings can contain nutrients, hormones, antibiotics and heavy metals and can wash into the soil and surface water. To deal with this problem, scientists have been working on ways to convert the waste into fuel. But alone, poultry droppings don’t transform well into biogas, so it’s mixed with plant materials such as switch grass.

Samuel O. Dahunsi, Solomon U. Oranusi and colleagues wanted to see if they could combine the chicken waste with Tithonia diversifolia (Mexican sunflower), which was introduced to Africa as an ornamental plant decades ago and has become a major weed threatening agricultural production on the continent.

The researchers developed a process to pre-treat chicken droppings, and then have anaerobic microbes digest the waste and Mexican sunflowers together. Eight kilograms of poultry waste and sunflowers produced more than 3 kg of biogas — more than enough fuel to drive the reaction and have some leftover for other uses such as powering a generator. Also, the researchers say that the residual solids from the process could be applied as fertilizer or soil conditioner.

The authors acknowledge funding from Landmark University (Nigeria).
Sept. 20, 2016 - Ontario farmers are invited to safely and responsibly dispose of their unwanted or obsolete pesticides and livestock (including equine) medications from Sept. 20-30. This collection program is offered at no cost to Ontario farmers.  

CleanFARMS, an industry-led, national not-for-profit agricultural waste management organization partnered with the Canadian Animal Health Institute (CAHI) and the Ontario Ministry of Agriculture, Food and Rural Affairs to co-fund the disposal program with support from CropLife Canada, Ontario Agri Business Association, Farm & Food Care Ontario, and the Ontario Fruit & Vegetable Growers' Association, in offering this free program.

"Ontario farmers are environmentally conscious and are pleased to partner with CleanFARMS to safely dispose of obsolete pesticides and livestock medications," says Craig Hunter from the Ontario Fruit and Vegetable Growers Association. "The CleanFARMS collection program provides an excellent one-stop service for Ontario farmers to continue to protect the land."

Farmers in Ontario have a long history of good stewardship practices. Since 1998, Ontario farmers have turned in more than 500,000 kilograms of obsolete pesticides.

"Ontario has a history of successful collections," says Barry Friesen, General Manager of CleanFARMS. "The participation of Ontario farmers shows they are good stewards of their land and committed to protecting the environment."

After collection, the pesticides and livestock medications are taken to a licensed waste management facility where they are disposed of through high temperature incineration.

The following locations will be accepting obsolete pesticides and livestock/equine medications from 9 a.m. until 4 p.m. on the dates specified:

Tuesday, Sept. 20
Brodhagen - Hoegy's Farm Supply
Guelph - Woodrill Farms
Glencoe - Parrish & Heimbecker

Wednesday, Sept. 21
Brussels - Brussels Agromart
Ailsa Craig - Hensall District Co-op
Aylmer - Max Underhill's Farm Supply

Thursday, Sept. 22
Beamsville - NM Bartlett
Forest - Lakeside Grain & Feed Ltd
Kitchener - GROWMARK Inc

Monday, Sept. 26
Bothwell - Hagerty Creek
Alliston - Alliance Agri-Turf
Tara - Sprucedale Agromart
New Hamburg - Good Crop Services
Lancaster - Munro's Agromart

Tuesday, Sept. 27
Tupperville - Agris Co-op
Wellandport - Clark AgriService
Bradford - Bradford Co-op
Walkerton - Huron Bay Co-op
Alfred - Synagri

Wednesday, Sept. 28
Paincourt - South West Ag Partners
Princeton - Cargill
Oakwood - Oakwood Ag Centre
Harriston - Cargill
Casselman - Agro Culture 2001

Thursday, Sept. 29
Blenheim - Thompsons
Bolton - Alliance Agri-Turf
Trenton - TCO Agromart
Dundalk - Huron Bay Co-op
Richmond - Synagri

Sept. 27-29
Verner - Verner Ag Centre
Gore Bay - Northland Agromart
Pembroke - M&R Feeds and Farm Supply
Arnprior - M&R Feeds and Farm Supply
Thornloe - Temiskaming Ag Centre
Thunder Bay - Thunder Bay Co-op

Friday, Sept. 30
Courtland - Cargill
Orangeville - Holmes Agro
Picton - County Farm Centre
Leamington - Agris Co-op
Chesterville - Synagri

For more information, please call CleanFARMS at 877-622-4460 or visit www.cleanfarms.ca
September 15, 2016 - The Government of Canada has announced an investment of $10 million over seven years to bring one of the world's most respected experts in food security to 
Canada. A recognized leader in crop adaptation to marginal soil environments, Leon Kochian will become the Canada Excellence Research Chair (CERC) in Food 
Systems and Security at the University of Saskatchewan. 

The United Nations estimates the world's population will reach 9.7 billion by 2050. Ensuring sufficient nutritious food will therefore be one of the greatest 
challenges facing humanity in the 21st century. Working out of the university's Global Institute for Food Security, Kochian will lead a multidisciplinary team 
to unlock the secrets of a plant's "hidden half"-the root system-an unexplored aspect of plant breeding. 

His research will develop new root-based approaches to crop improvement that will enable breeding for improved root system structure and function, producing 
new varieties with higher yields and greater capacity to thrive in difficult conditions. Kochian will identify and map the genes linked to root system 
traits that are specifically responsible for nutrient and water uptake under drought conditions. He anticipates this research will enable increased crop 
production in less fertile areas. 


Leon Kochian is the University of Saskatchewan's second CERC after Howard Wheater, Canada Excellence Research Chair in Water Security. He becomes the country's 27th CERC. 
In total, Leon Kochian's research will receive support worth almost $21 million. The Government of Canada is also providing $800,000 through the Canada Foundation for Innovation. The balance will be invested by the Global Institute for Food Security ($7 million) and the University of  Saskatchewan ($3 million). 

 

 

Fifty years of sustainability analysis and insight – that is what Egg Farmers of Canada (EFC) recently commissioned Canadian consulting firm Global Ecologic to produce. The report is entitled: “Environmental Footprint of Canadian Eggs: 1962 versus 2012.”

EFC CEO Tim Lambert says the study results demonstrate the way Canadian egg farmers have been, and still are, constantly looking for new ways to make egg production more efficient and environmentally sound. “While egg production increased by more than 50 per cent between 1962 and 2012 [from about 43 million dozen to 66 million dozen eggs per year],” he notes, “the industry’s overall environmental footprint decreased across all emissions and resource use domains.” Indeed, Nathan Pelletier (president of Global Ecologic) found the average environmental impact for eggs produced in conventional housing systems in 2012 was roughly one-third of what it was in 1962.

To begin the study, Pelletier identified the average conditions that existed in the egg production supply chains of 2012 and 1962, and measured supply chain water, land and energy use, as well as greenhouse gas, acidifying and eutrophying emissions. For this, he relied on recent environmental life cycle analysis done for EFC that outlined the state of the industry in 2012, and also drew from various sources to gain insights into the realities of 1962. Taking these conditions, uses and emissions, he then evaluated the resource and environmental performance gains linked to specific advancements over the past five decades, differentiating between changes attributed to supply chain versus farm-level activities.

 However, any study that involves gathering and analyzing data from decades ago has potential challenges. “Important to conducting an analysis such as this is to know in advance which variables really matter, and to focus data collection activities accordingly,” Pelletier explains. “For example, having previously evaluated contemporary egg production systems in both the US and Canada, as well as a variety of other livestock production systems, I knew that gathering representative data for variables such as feed composition, feed conversion efficiency, rate of lay, and mortality rates in the early 1960s would be quite important for the overall results. Fortunately, 1960s data for these variables are available in peer-reviewed literature, Canadian random sample egg production test data and from Statistics Canada.” Pelletier also found good information on such factors as fertilizer production, and inputs and yields for feed production.

 Pelletier found that compared to 1962, Canadian egg industry acidifying emissions (those that cause acidification of freshwater systems, such as sulfur dioxide and nitrogen oxides) of 2012 were a whopping 61 per cent lower. Eutrophying emissions (those that lead to excessive nutrients in waterways, resultant explosive plant growth such as algal blooms and death of animal life due to lack of oxygen; sulfur dioxide, nitrogen oxides and ammonia) were even lower (68 per cent). Greenhouse gas emissions were 72 per cent lower. The energy, land and water use in the entire supply chain decreased by 41, 81 and 69 per cent respectively.

Pelletier notes the Canadian egg industry was in transition to cage-based production during the 1960s, and explains that the specific mix of housing systems does not really matter for an analysis such as this. “What is important are hen performance data (e.g. rate of lay, mortality, etc.), whatever the housing system employed. Quite good data are available for these variables.”

Reasons for improved  performance
As you can imagine, the Canadian egg industry’s much-diminished environmental footprint compared to fifty years ago is due to several factors. The most important of these is changes, for both layer and pullet feeds, in feed composition, feed conversion efficiency, and the environmental footprints of specific feed inputs. Layer feeds in 2012 had, on average, just 38 per cent of the overall environmental impact of those of 1962, and pullet feeds 69%. This is because the average impact per tonne of production of feed ingredients improved, such as a 43 per cent decrease for corn in 2012 compared to 1962. It’s also because general inputs for field crops also dropped. Pelletier found, for example, that the energy required for ammonia synthesis (used to make nitrogen fertilizer) was cut by half over the study period. Improved crop yields and higher fuel efficiencies in freight transport also contributed. In addition, the amount of meat/bone/feather meals and fats in feed has dropped over the last 50 years, and these inputs have a much higher environmental impact compared to ingredients whose use has risen over the decades, such as soy meal.

Other important industry improv-ements include improved animal health and higher productivity in pullet and egg production. Production per hen has improved by almost 50 per cent and feed conversion efficiency by 35 per cent, while the combined mortality rate for pullets and layers declined by 63 per cent.

Energy use, however, was the least improved factor, and Pelletier says this is because current energy production involving fossil fuels requires more input energy (for extraction and processing, etc.) than it did 50 years ago. “Without the changes we’ve seen in feed composition and efficiencies at the level of pullet and egg production,” he notes, “contemporary egg production would be considerably more energy intensive, simply due to the declining efficiency of fossil energy provision over time.”

U.S. results
Several years ago, Pelletier and colleagues from other organizations conducted a similar 50-year comparison of life cycle environmental impacts for egg production in the U.S. (1960 compared to 2010). Feed efficiency was the biggest factor. “The feed conversion ratio for egg production improved from 3.44 kg/kg in 1960 to 1.98 kg/kg — a gain of 42 per cent,” he notes. “Nonetheless, achieving feed use efficiencies comparable to the best performing contemporary facilities [the range reported by survey respondents was 1.76-2.32 kg/kg] industry-wide would do much to further reduce overall impact.”

As it has in Canada, differing feed composition has also played an important role in reducing impacts — in particular, both reduction in the total amount of animal-derived materials used, as well as increased use of porcine and poultry materials in place of ruminant materials.  

Overall use of study
Pelletier sees several uses to which the study results can be put. “First, they help us to understand the relative importance of specific variables in changing the environmental footprint of Canadian egg production,” he notes. “This knowledge will inform future efforts to continue to improve the sustainability of Canadian eggs in terms of priority areas for targeted management initiatives.” The results, in Pelletier’s view, also provide valuable benchmarks. He says looking forward individual producers as well as the industry as a whole will be able to measure their sustainability performance and track their progress relative to these benchmarks.

Finally, the study results provide solid evidence of the progress that the Canadian industry has achieved. “The results are also a source of inspiration for the future,” Pelletier says. “When I think about what has been accomplished over the past 50 years, I’m excited to imagine what will be possible over the next 50! The next steps, I believe, are for the industry to collaborate in defining a sustainability agenda, along with metrics, targets and milestones for sustainability initiatives looking forward.”

Lambert agrees. “Egg Farmers of Canada is becoming recognized as a global leader in agriculture for its commitment to society through its sustainability initiatives and dedication to social responsibility,” he says. “This 50-year study provides a firm foundation for the industry’s sustainability initiatives going forward, setting out benchmarks by which we can continue to measure progress. Understanding the components of the industry’s environmental footprint ensures that we can work with our producers and stakeholders to make sound, sustainable choices for the future.”

Percentage change in Canadian egg production from 1962 to 2012, per tonne of eggs produced

  • Acidifying emissions 61% lower
  • Eutrophying emissions 68% lower
  • GHG emissions 72% lower
  • Energy use 41% lower
  • Land use 81% lower
  • Water use 69% lower
  • Feed conversion rate 35% increase
  • Production per hen housed 50% increase
  • Mortality rate (pullets) 21% lower
  • Mortality rate (layers) 75% lower

Percentage change between 1962 and 2012, industry-wide

  • Acidifying emissions 41% lower
  • Eutrophying emissions 51% lower
  • GHG emissions 57% lower
  • Energy use 10% lower
  • Land use 71% lower
  • Water use 53% lower
  • Egg production 51% higher

 

 

 

The poultry industry has a long and complicated supply chain, incorporating a wide spectrum of costs and benefits. When you think about sustainability in that chain, it doesn’t make sense to improve one part of the system if that change may unintentionally burden another part of the process and outweigh the advantages achieved.

Nathan Pelletier is the president of Global Ecologic, an independent sustainability consulting firm that measures and manages strategy in food and other industrial systems. Speaking at the 2015 Canadian Poultry Sustainability Conference in London, Ont., he explained how life cycle thinking could be used to help analyze the past, present and future of the poultry industry in the quest for sustainability.

Life cycle thinking – changing from a management perspective to a systems perspective – is an analytical process that helps to examine the relevant interactions associated with the production of goods and services, allowing us to pinpoint which aspects of the supply chain have the biggest impact.

The results of life cycle thinking can often be counterintuitive, flying in the face of our current thoughts. For example, is local food more sustainable? With life cycle analysis, this argument is no longer credible if you factor in the efficiencies of transport over long distances by rail, truck or boat. “There will always be trade-offs,” said Pelletier. “We need to be conscious of these to make decisions regarding our own priorities.”

For the poultry industry, he sees no alternative but to embrace this management philosophy throughout the supply chain, but Pelletier says it won’t be a straightforward journey.

Complexity will surround everything from agreeing on definitions of sustainability to operationalizing the information, but he predicts that life cycle thinking will become a requirement in the new marketplace, coming to the forefront of regulatory guidelines within 10 years.

Looking back over 50 years, in an in-depth historical life cycle analysis published in the Poultry Journal in 2014, Pelletier compared the environmental footprint of the poultry industry in the U.S. in 1960 versus 2010, putting some hard numbers around poultry production.

The modern poultry industry is not the same as it was 50 years ago, and that’s an interesting story itself. His results show astonishing changes.

While egg production in the U.S. has risen 30 per cent in 50 years, the environmental footprint per kilogram of eggs produced in 2010 is 65 per cent lower in acidifying emissions, 71 per cent lower in eutrophying emissions, 71 per cent lower in greenhouse gas emissions and 31 per cent lower in cumulative energy demand during that same time.

According to Pelletier, the reduction could be attributed to factors such as feed and manure management. Up to 30 per cent of the improvement is based in improved efficiencies of background systems, for example supply chain efficiencies in transportation and energy use. Thirty to 44 per cent was from changes in feed composition, reflecting efficiencies realized in crop production with less inputs for increased yields. Another 28 to 43 per cent was due to improvements in genetics, feed conversion and bird health.

Productivity has increased 50 per cent, from 195 eggs to 297 eggs annually. In 1960, 3.1 kg of feed equaled one kg of eggs; now only two kg of feed is needed per kg of eggs. Not only that but the birds are healthier, with 63 per cent lower mortality.

This is a good news story, but how does poultry stack up against other protein sources? It’s hard to compare unless studies have been done with the same protocols, said Pelletier, but in general, monogastrics are more efficient. The most efficient protein source is pork, followed by eggs, both better than beef. This matters because sustainability is becoming such a differentiating factor in the marketplace, for social license, regulatory compliance and market access. In this respect, poultry is well positioned for the future.

Looking forward, Pelletier suggested that proactive engagement in sustainability is essential, making four suggestions.

First, develop a Canadian life cycle inventory of consistent data to support production. Defending any kind of comparison requires such data.

The poultry industry also needs to develop and implement a transparent, multi-criteria sustainability benchmarking program for producers, to support sustainability initiatives and provide benchmarking and goal setting targets.

He sees a third opportunity in acting as a leader in pushing new frontiers. “Don’t be too attached to the status quo,” said Pelletier. “Just think about the changes in your industry over the past 50 years, and imagine where you could be 50 years from now?” Support and participate in the research that will be necessary to define the sustainable poultry production systems of the future.

Finally, formalize a commitment industry wide by engaging all stakeholders in a round-table discussion on sustainability, defining a common vision and a strategy to achieve it. As Pelletier says, “use it as an opportunity to see sustainability not as a challenge or as a hoop to jump through, but as a source of competitive advantage, as an exciting and necessary collaborative journey toward that shared vision of the future.”

 

 

 

April 1, 201`6 - The Government of Canada is investing $27 million to help producers find ways to mitigate greenhouse gas (GHG) emissions from their farming operations, Agriculture and Agri-Food Minister, Lawrence MacAulay announced March 30.

The investment is part of the Government of Canada’s ongoing efforts to help the sector be innovative, competitive and sustainable. The Agricultural Greenhouse Gases Program (AGGP) supports research into greenhouse gas mitigation practices and technologies that can be adopted on the farm.

This new five-year investment (2016-2021) extends Canada’s existing commitment to support the objectives of the Global Research Alliance on Agricultural Greenhouse Gases.

The initial AGGP investment (2011-16) provided $21 million for 18 projects undertaken by universities, provincial governments, research institutions and conservation groups. These projects have resulted in innovative technologies and Beneficial Management Practices (BMPs) in four priority areas for farmers: livestock systems, cropping systems, agricultural water use efficiency, and agro-forestry.

February 17, 2016 – New research has shown that tackling antibiotic resistance on only one front is a waste of time because resistant genes are freely crossing environmental.

Analysis of historic soil archives dating back to 1923 has revealed a clear parallel between the appearance of antibiotic resistance in medicine and similar antibiotic resistant genes detected over time in agricultural soils treated with animal manure.

Collected in Denmark – where antibiotics were banned in agriculture from the 1990s for non-therapeutic use – the soil archives provide an 'antibiotic resistance timeline' that reflects resistant genes found in the environment and the evolution of the same types of antibiotic resistance in medicine.

Led by Newcastle University, UK, the study also showed that the repeated use of animal manure and antibiotic substitutes can increase the capacity of soil bacteria to mobilize, or ready themselves, and acquire resistance genes to new antibiotics.

Publishing their findings in the academic journal Scientific Reports, the study's authors say the data highlights the importance of reducing antibiotic use across all sectors if we are to reduce global antibiotic resistance.

"The observed bridge between clinical and agricultural antibiotic resistance means we are not going to solve the resistance problem just by reducing the number of antibiotics we prescribe in our GP clinics,” said lead author David Graham, professor of ecosystems engineering at Newcastle University.

"To reduce the global rise in resistance, we need to reduce use and improve antibiotic stewardship across all sectors. If this is not done, antibiotic resistance from imprudent sectors will cross-contaminate the whole system and we will quickly find ourselves in a situation where our antibiotics are no longer effective."

Antibiotics have been used in medicine since the 1930s, saving millions of lives. Two decades later, they were introduced into agricultural practices and Denmark was among the leaders in employing antibiotics to increase agricultural productivity and animal production.

However, a growing awareness of the antibiotic resistance crisis and continued debate over who and which activities are most responsible led to the EU calling for the use of antibiotics in non-therapeutic settings to be phased out and Denmark led the way.

The Askov Long-Term Experiment station in Denmark was originally set up in 1894 to study the role of animal manure versus inorganic fertilizers on soil fertility.

Analyzing the samples, the team – involving experts from Newcastle University, the University of Strathclyde and Aarhus University – were able to measure the relative abundance of specific β-lactam antibiotic resistant genes, which can confer resistance to a class of antibiotics that are of considerable medical importance.

Prior to 1960, the team found low levels of the genes in both the manured soil and that treated with inorganic fertilizer. However, by the mid 1970s, levels of selected β-lactam genes started to increase in the manured soils, with levels peaking in the mid 1980's. No increase or change was detected in the soil treated with inorganic fertilizer.

"We chose these resistant genes because their appearance and rapid increase in hospitals from 1963 to 1989 is well-documented," explains Professor Graham.

"By comparing the two timelines, we saw the appearance of each specific gene in the soil samples was consistent with the evolution of similar types of resistance in medicine. So the question now is not which came first, clinical or environmental resistance, but what do we do about it?"

Following the ban on non-therapeutic antibiotic use in Danish agriculture, farmers substituted metals for antibiotics, such as copper, and levels of the key β-lactam genes in the manured soils declined rapidly, reaching pre-industrialization levels by 2010.

However, at the same time the team measured a 10-fold rise in Class 1 Integrons. These are gene carrier and exchange molecules – transporters that allow bacteria to readily share genes, including resistance genes.

These findings suggest the application of manure and antibiotic substitutes, such as copper, may be 'priming' the soils, readying them for increased resistance transmission in the future.

"Once antibiotics were banned, operators substituted them with copper which has natural antibiotic properties," explains Professor Graham.

"More research is needed but our findings suggest that by substituting antibiotics for metals such as copper we may have increased the potential for resistance transmission.

"Unless we reduce use and improve stewardship across all sectors – environmental, clinical and agricultural – we don't stand a chance of reducing antibiotic resistance in the future."

 

September 1, 2015 - Egg Farmers of Alberta (EFA) hosted an Environmental Stewardship Workshop in Edmonton August 26-27, 2015 that brought together a diverse mix of influencers and decision-makers from across the egg supply chain, including farmers, graders, retailers and restaurants, as well as industry, government and non-governmental organizations.  Participants shared their ideas and provided strategic insights about the past, present and future of sustainable egg production in Alberta.

Susan Gal, General Manager of EFA said in a release that her takeaway from the workshop “is that all stakeholders have a desire to support one another as we work together to build a sustainable egg industry in Alberta, and across Canada.”

For Alberta egg farmers, sustainable egg production is socially responsible, environmentally sound and economically viable.  The workshop enabled EFA to share past and present environmental initiatives in Alberta, including the launch of the Producer Environmental Egg Program – the Canadian egg industry’s first on-farm environmental program – and the publication of EFA’s inaugural Sustainability Report.  More importantly, the workshop allowed other stakeholders to explain their views and expectations for the future around sustainability, as it relates to the egg industry and food production.

The workshop also included a tour of STS Farms, which is one of the more than 160 registered egg farms in Alberta.  Susan Schafers, chair of the EFA and her family were gracious hosts, leading the more than 30 attendees through the pullet barn, layer barn and egg collection room.  It was an enjoyable and educational experience, especially for those guests that had never been on an egg farm.

EFA says it will take the next step with these stakeholders and others on its journey of continuous improvement.  Options are being considered to expand on these existing relationships and engage with additional stakeholders regarding the past, present and future of other important topics.  “Even though we were focused on the topic of environmental stewardship, it was great to see and hear the stakeholders ask questions and offer opinions about the trade-offs between environmental stewardship, hen housing, animal welfare, food safety, economics and other factors,” said Gal.  

 

 

What do poultry manure and emissions from Alberta’s oil sands have in common? They are both connected to a plant-like organism call micro-algae, which could help the province meet its greenhouse gas emissions reduction targets.

Micro-algae grow by leaps and bounds when fed with poultry manure as an organic fertilizer, which in turn make them more effective for scrubbing greenhouse gases like carbon dioxide from industrial facilities and power plants before they enter the atmosphere.

“Chicken manure is high in nitrogen, phosphorus and potassium. It contains the main nutrients that algae need,” says Bob Mroz, President and Chief Executive Officer of a Maryland-based biotech company called HY-TEK Bio. It is developing and marketing patented technology using micro-algae for mitigation of greenhouse gases.

Alberta likes the potential of HY-TEK Bio’s technology, as the company was recently awarded a $500,000 grant as part of the $35 million international Grand Challenge: Innovative Carbon Uses competition offered by the province’s Climate Change and Emissions Management Corporation (CCEMC). The corporation collects a levy from large greenhouse gas emitters that in turn is used to fund promising technology aimed at reducing greenhouse gases, like the micro-algae technology offered by HY-TEK Bio.

The company has identified a unique strain of micro-algae that is able to absorb 100 per cent of greenhouse gases like carbon dioxide from flue gases produced by industrial manufacturing and power generation.

Micro-algae are photosynthetic, plant-like organisms that need light, water, carbon dioxide and nutrients, mainly nitrogen and phosphorus. They can feed on compounds like carbon dioxide, nitrogen oxide, sulphur dioxide and volatile organic compounds emitted from such facilities as heavy oil production plants and coal-fired power plants, releasing beneficial oxygen in the process and growing into a plant commodity with considerable commercial potential.

The challenge for HY-TEK Bio has been to find an inexpensive source of nutrients to fertilize the micro-algae to accelerate its growth to perform as advertised in a greenhouse gas mitigation application. Addition of nutrients like those in poultry manure make the micro-algae grow faster and increases its production, like fertilizer added to a corn crop.

Mroz says that as the company worked to develop its technology, it encountered organizations like the Chesapeake Bay Foundation, which expressed its concerns about poultry manure seeping into the region’s water drainage system, resulting in considerable algae growth in areas like the Chesapeake Bay. Because of this concern, and the availability of grants, HY-TEK Bio approached researchers at the University of Maryland, which has been working with micro-algae extensively for the past four years, to investigate poultry manure’s potential as a cheap nutrient source. The company already has a working demonstration facility with four bioreactors consuming flue gas emissions from a three megawatt, biogas-fueled power plant attached to a City of Baltimore waste water treatment plant.

University of Maryland scientists are now testing poultry manure as a natural fertilizer to feed micro-algae. The overall plan is to develop a pilot project that demonstrates a process that, in addition to showing how the micro-algae mitigates greenhouse gases, also demonstrates how the poultry manure-derived nutrients can be applied to maintain the growth and health of the micro-algae.

Should the application prove successful and commercially attractive, this could pay a significant environmental and economic dividend to poultry and egg producers, as well as help to solve a growing global problem. Not only would producers of poultry manure have a new and better method for manure disposal, but it could also create a new potential income stream for them.

Dr. Feng Chen, Associate Professor at the University of Maryland Centre for Environmental Science, says there are about 800,000 tons of poultry manure currently being generated annually in the Maryland and Mid-Atlantic area of the United States alone. Most of the manure is land applied as a form of disposal, but the problem is that sometimes the nutrients leach into the water drainage system. An alternative use of this poultry manure as fertilizer for micro-algae would direct that manure into a new, non-polluting direction.

Alberta is one jurisdiction that has shown an interest in what the university and HY-TEK Bio are accomplishing with the use of micro-algae in greenhouse gas mitigation in its massive fossil fuel industry. It has been identified as a notable contributor of carbon dioxide to the atmosphere, especially in its oil sands mining and processing operations.

The University of Maryland research has just started and is being conducted at a basic level, with development of a system to economically extract the nutrients from the raw poultry manure, leading to methods of controlled release of the nutrients to the micro-algae to achieve certain performance targets.

While the research project is still in its early stages, the University of Maryland researchers say that they are “quite encouraged” by the results they have witnessed so far in using poultry manure nutrients to encourage micro-algae growth. The poultry manure they are using was collected from various commercial operations in Maryland. Now, the University is working on such issues as how to develop a consistent liquefied nutrient product from raw poultry manure, given the variability of the raw material from one poultry operation to another.

Mroz says while there is some variability, they all seem to work well as nutrients for micro-algae growth. The main issue is cost of production, taking it from its raw form to a liquid.

“When you are talking about 500 to 1000 of these bioreactor tanks to mitigate a power plant, the nutrient has to be really, really cheap,” says Mroz. About 400 of the company’s micro-algae tanks can fit on one acre, “but we can use multi-storey facilities to increase land usage.”

In addition to establishing an inexpensive process to convert the raw poultry manure to liquid form for use as a micro-algae nutrient, what HY-TEK Bio hopes to achieve through its research project with the University of Maryland is to determine if the brown color of the liquid manure is a deterrent to micro-algae growth because the algae needs as much light as possible to grow.

Should the University successfully develop a method to cost-effectively manufacture a clear, odourless liquid nutrient product from raw poultry manure, Mroz says this also has potential as a marketable, commercial product.

Dr. Russell Hill, Director and Professor at the Institute of Marine and Environmental Technology (IMET) at the University of Maryland Center for Environmental Science, says the University’s research related to using poultry manure as a nutrient source for micro-algae is novel.

“If greenhouse gas mitigation using micro-algae is ever going to really be used on a large scale, the nutrient requirement will be huge,” says Hill. “It could really help to solve the problem of disposal of chicken manure, and potentially it could even put greater value on the chicken manure.”

 

 

 

 

For each issue of Canadian Poultry magazine, I give our production team several pictures that relate to the cover story and we sit down and discuss the photo options and the article. It’s often not easy to find photos that convey the story perfectly, but we try to have something relevant.

Taking photos inside of commercial poultry barns is tricky and requires a lot of equipment that I don’t have, and let’s face it there are only so many ways to photograph chickens in a barn. So, often I rely on stock photography.

Stock photography websites offer plenty of different options. In addition to photos of chickens, there are many photo options available to show a “concept” if you dig deep enough. For this month’s cover story (see page 10) I tried to show “growth” in the poultry industry in a generic form, without focusing on one specific driver. I gave the production team photos of a car dashboard (to show “driving”) and arrows on a graph to show growth. A bit of a stretch maybe, but I thought it could work with the right image.

Well my first attempt didn’t hit the mark but it brought up an interesting point about consumer perception.

Since the cover story discusses not only what’s driving growth, but how these drivers will allow growth to be sustainable, one of our production artists suggested a photo of chickens in loose housing or in a group outside, because in her mind, this type of production is “more sustainable.”

This was an innocent comment from someone who hasn’t had to sit through a multitude of cover meetings with me explaining why these types of photos are often inappropriate for many articles (she’s fairly new to the publishing company). Yet, her innocence is very telling of how an average consumer envisions what poultry production should look like.

This is matched by a recent survey reported by the Western Producer. Commissioned by Alberta Farm Animal Care, the survey asked more than 750 people about their knowledge of farm practices and how it might affect their eating habits. While it’s not surprising the market research firm found that [people] are “fundamentally ignorant about farming practices and what goes into what they are eating,” it also identified the term “super farms” emerged in the survey, which respondents used to refer to “large corporate industrial farms.”

It’s not clear if a typical poultry operation where chickens are housed in a barn would be considered a “super farm,” but respondents felt these types of operations should be monitored for their effect on the environment, animal welfare and human health. Concern over how “industrial” farms could be impacting health was identified as an emerging issue, and that women were more likely to believe confinement housing had detrimental health effects.

This shows that in addition to animal welfare – the key focus area for consumer engagement efforts as of late – consumers are worried about environmental effects, and how they could affect their own health.

If poultry is going to continue in a sustainable manner, it’s not going to be achieved solely on the type of operation envisioned by our production artist. The industry needs to consider how to address the “look” of confinement housing from an environmental, and animal welfare point of view.

 

 

 

November 19, 2014 - "Chicken juice" — the liquid produced from defrosting chickens – allows Campylobacter to form protective biofilms and boost its survival in food processing sites, according to a study from the Institute of Food Research. READ MORE

April 15, 2014 - A century ago, over half of Canada's population was farmers. Today, it's down to two per cent - with most people more than three generations removed from their farming ancestors. This shift has meant that most Canadians have lost touch - people often don't understand how their food is grown or how agriculture has changed.

Farm & Food Care Ontario (FFC), as the first coalition of its type in Canada, brings together tens of thousands of livestock, crop and horticulture farmers and related businesses with a mandate to provide credible information on food and farming in Ontario.

In order for FFC to stay in touch with both farmers and consumers, it is important to know what consumers (and farmers) are thinking. As such, the organization works with Ipsos marketing to create benchmarks and ensure that work is being done in the right areas.

"We integrated two studies that bring attitudes together from the consumers point of view and the producers point of view," says Bruce Kelly of FFC. "What we did differently [this time] when we went to the consumers, was instead of just asking them how they feel about animal welfare or about the environment, we put those in context of some of the greater social issues.

"For example, we asked 'How do you feel about the environment compared with paying the mortage? How do you feel about animal welfare in relation to food affordability?' And this has given us a much better context and insight. Food has to be economical for the people who buy it and generate a good return for the people that produce it."

For this study, Ipsos chose to use qualitative study groups rather than internet polling, as it allows them to meet the consumers/producers involved and engage with them at a more basic level. It also allowed Ipsos staff to sit back and watch a discussion unfold without much prompting thus allowing for the collection of key words that seemed to be used often in connotation with agriculture.

The research found that animal welfare and the environment are "higher order" concerns that emerge once food safety, affordability and health needs are met. Subjectively, it appears that farmers are more open to discussions relating to environmental practices, and view their role as stewards as part of the long-term sustainability of the operation.

Additionally, the study found that although consumers say animal welfare is less important than other factors, it represents significant risk due to the strong, negative emotional impact that neglect/abuse can have on consumers – perhaps more so than any other principle.

Other Key Findings:

  • Adoption of animal care best practices is high (83 per cent). However, a sginficiant number of Ontario livestock farmers (39 percent) are lower adopters of animal care best practices.
  • Adoption of environmental best practices is relatively high (71 per cent). However, a significant number of Ontario farmers (45 per cent) are lower adopters of environmental best practices.
  • There is room for improvement in a number of areas, however the biggest area for improvement are Codes of Practice/staff training, biosecurity and resource planning as it relates to environmental best practices.
  • Understanding the drivers and barriers to implementing animal care best practices will help to shift lower adopters to become higher adopters. Key drivers and barriers to adoption of animal care best practices revolve around: farmer attitudes; feasibility; awareness and knowledge of best practices; and public image.

More information on the findings can be obtained by contacting Farm & Food Care Ontario at 519-837-1326.

January 27, 2014 - A new study published in Poultry Science shows that while U.S. egg production has increased over the past 50 years, the industry has also been able to significantly decrease its environmental footprint. Researchers conducted a lifecycle analysis of U.S. egg production from 1960 to 2010 to evaluate environmental performance measures for the complete lifecycle from crops to hens to the farm gate. Study findings indicate that the environmental efficiencies are the result of a wide range of factors, including the reduction of natural resource use, improved hen feed, better disease control and advancements in hen housing systems. 

"The U.S. egg industry has evolved remarkably over the past five decades by incorporating new technologies to protect natural resources," said Hongwei Xin, agricultural and biosystems engineering and animal science professor at Iowa State University, director of the Egg Industry Center and the study's lead researcher. "Egg farmers have improved their production practices, allowing them to provide an affordable source of high-quality protein while using fewer resources and producing less waste."

Key results of the study found that compared to 1960:

  • The egg production process releases significantly less polluting emissions, including 71 percent lower greenhouse gas emissions.
  • Hens now use 32 percent less water per dozen eggs produced.
  • Today's hens use a little over half the amount of feed to produce a dozen eggs.
  • At the same time, today's hens produce 27 percent more eggs per day and are living longer. 

A Closer Look at the Findings
Due to increased feed efficiency, advancements in hen housing and manure management, egg farms now use less water and energy on a daily basis and release less polluting emissions. Every aspect of the egg production process, from cultivating feed to raising the laying hens, has led to a reduced environmental footprint.

  • Feed efficiency plays a key role in reducing environmental impacts. Due to advancements in nutrition and bird breeding, young hens now require 48 percent less food during the rearing period than they did in 1960 and the laying hens have 42 percent better feed conversion. Using 1960 technology to produce the 2010 egg supply would have required 78 million more hens, 1.3 million more acres of corn and 1.8 million more acres of soybeans.
  • Advancements in hen housing, such as improved building ventilation, temperature control, better lighting and a more secure housing environment, help to ensure that hens are protected from disease-carrying wildlife. These techniques have been widely adopted by egg farmers across the country, leading to healthier hens with lower mortality and higher rates of egg production. In addition, advancements in the development of preventative medicine to eliminate avian diseases have greatly improved hen health.
  • Manure management has played a role in minimizing the egg industry's environmental footprint. The vast majority of manure from laying hens is recycled into crop production, providing nutrients for plants, contributing to healthy soils, saving energy and reducing commercial fertilizer use.

Looking Ahead
With the growing U.S. population and egg demand on the rise, egg farmers play an important role in providing an abundant and affordable source of high-quality protein.

"The U.S. population has increased by 72 percent over the past 50 years, but efficiencies in egg production have enabled us to meet the demands of the growing population with just 18 percent more hens, while also leaving a smaller environmental footprint," said Bob Krouse, an egg farmer for Midwest Poultry Services in Indiana. "Egg farmers are now in a position to help fulfill the growing need for an affordable and nutritious source of protein in an environmentally responsible manner."

The study was funded by the American Egg Board, the U.S. Poultry and Egg Association, the United Egg Association -- Allied and the Egg Industry Center. To obtain data for 2010, researchers conducted anonymous surveys with egg farmers and collected data on 57.1 million young hens and 92.5 million laying hens. For more information visit www.incredibleegg.org or to read the full text of the study visit www.poultryscience.org.

Page 1 of 3

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Agricultural Data Use and Transparency
Fri Jun 23, 2017 @ 8:00AM - 05:00PM
Breakfast on the Farm
Sat Jun 24, 2017 @ 9:00AM - 01:00PM
Children’s Progressive Safety Day
Thu Jul 06, 2017 @ 8:00AM - 05:00PM
Chicken Marketing Summit
Sun Jul 16, 2017 @ 8:00AM - 05:00PM
Poultry Science Association AGM
Mon Jul 17, 2017 @ 8:00AM - 05:00PM