Poultry Manure as Algae Food

Alberta supports climate change technology that absorbs greenhouse gases
Tony Kryzanowski
Thursday, 04 June 2015
By Tony Kryzanowski
University of Maryland scientists collected poultry manure from various area sources to test if they could economically extract the nutrients and deliver them in liquid form.
University of Maryland scientists collected poultry manure from various area sources to test if they could economically extract the nutrients and deliver them in liquid form.

 

What do poultry manure and emissions from Alberta’s oil sands have in common? They are both connected to a plant-like organism call micro-algae, which could help the province meet its greenhouse gas emissions reduction targets.

Micro-algae grow by leaps and bounds when fed with poultry manure as an organic fertilizer, which in turn make them more effective for scrubbing greenhouse gases like carbon dioxide from industrial facilities and power plants before they enter the atmosphere.

“Chicken manure is high in nitrogen, phosphorus and potassium. It contains the main nutrients that algae need,” says Bob Mroz, President and Chief Executive Officer of a Maryland-based biotech company called HY-TEK Bio. It is developing and marketing patented technology using micro-algae for mitigation of greenhouse gases.

Alberta likes the potential of HY-TEK Bio’s technology, as the company was recently awarded a $500,000 grant as part of the $35 million international Grand Challenge: Innovative Carbon Uses competition offered by the province’s Climate Change and Emissions Management Corporation (CCEMC). The corporation collects a levy from large greenhouse gas emitters that in turn is used to fund promising technology aimed at reducing greenhouse gases, like the micro-algae technology offered by HY-TEK Bio.

The company has identified a unique strain of micro-algae that is able to absorb 100 per cent of greenhouse gases like carbon dioxide from flue gases produced by industrial manufacturing and power generation.

Micro-algae are photosynthetic, plant-like organisms that need light, water, carbon dioxide and nutrients, mainly nitrogen and phosphorus. They can feed on compounds like carbon dioxide, nitrogen oxide, sulphur dioxide and volatile organic compounds emitted from such facilities as heavy oil production plants and coal-fired power plants, releasing beneficial oxygen in the process and growing into a plant commodity with considerable commercial potential.

The challenge for HY-TEK Bio has been to find an inexpensive source of nutrients to fertilize the micro-algae to accelerate its growth to perform as advertised in a greenhouse gas mitigation application. Addition of nutrients like those in poultry manure make the micro-algae grow faster and increases its production, like fertilizer added to a corn crop.

Mroz says that as the company worked to develop its technology, it encountered organizations like the Chesapeake Bay Foundation, which expressed its concerns about poultry manure seeping into the region’s water drainage system, resulting in considerable algae growth in areas like the Chesapeake Bay. Because of this concern, and the availability of grants, HY-TEK Bio approached researchers at the University of Maryland, which has been working with micro-algae extensively for the past four years, to investigate poultry manure’s potential as a cheap nutrient source. The company already has a working demonstration facility with four bioreactors consuming flue gas emissions from a three megawatt, biogas-fueled power plant attached to a City of Baltimore waste water treatment plant.

University of Maryland scientists are now testing poultry manure as a natural fertilizer to feed micro-algae. The overall plan is to develop a pilot project that demonstrates a process that, in addition to showing how the micro-algae mitigates greenhouse gases, also demonstrates how the poultry manure-derived nutrients can be applied to maintain the growth and health of the micro-algae.

Should the application prove successful and commercially attractive, this could pay a significant environmental and economic dividend to poultry and egg producers, as well as help to solve a growing global problem. Not only would producers of poultry manure have a new and better method for manure disposal, but it could also create a new potential income stream for them.

Dr. Feng Chen, Associate Professor at the University of Maryland Centre for Environmental Science, says there are about 800,000 tons of poultry manure currently being generated annually in the Maryland and Mid-Atlantic area of the United States alone. Most of the manure is land applied as a form of disposal, but the problem is that sometimes the nutrients leach into the water drainage system. An alternative use of this poultry manure as fertilizer for micro-algae would direct that manure into a new, non-polluting direction.

Alberta is one jurisdiction that has shown an interest in what the university and HY-TEK Bio are accomplishing with the use of micro-algae in greenhouse gas mitigation in its massive fossil fuel industry. It has been identified as a notable contributor of carbon dioxide to the atmosphere, especially in its oil sands mining and processing operations.

The University of Maryland research has just started and is being conducted at a basic level, with development of a system to economically extract the nutrients from the raw poultry manure, leading to methods of controlled release of the nutrients to the micro-algae to achieve certain performance targets.

While the research project is still in its early stages, the University of Maryland researchers say that they are “quite encouraged” by the results they have witnessed so far in using poultry manure nutrients to encourage micro-algae growth. The poultry manure they are using was collected from various commercial operations in Maryland. Now, the University is working on such issues as how to develop a consistent liquefied nutrient product from raw poultry manure, given the variability of the raw material from one poultry operation to another.

Mroz says while there is some variability, they all seem to work well as nutrients for micro-algae growth. The main issue is cost of production, taking it from its raw form to a liquid.

“When you are talking about 500 to 1000 of these bioreactor tanks to mitigate a power plant, the nutrient has to be really, really cheap,” says Mroz. About 400 of the company’s micro-algae tanks can fit on one acre, “but we can use multi-storey facilities to increase land usage.”

In addition to establishing an inexpensive process to convert the raw poultry manure to liquid form for use as a micro-algae nutrient, what HY-TEK Bio hopes to achieve through its research project with the University of Maryland is to determine if the brown color of the liquid manure is a deterrent to micro-algae growth because the algae needs as much light as possible to grow.

Should the University successfully develop a method to cost-effectively manufacture a clear, odourless liquid nutrient product from raw poultry manure, Mroz says this also has potential as a marketable, commercial product.

Dr. Russell Hill, Director and Professor at the Institute of Marine and Environmental Technology (IMET) at the University of Maryland Center for Environmental Science, says the University’s research related to using poultry manure as a nutrient source for micro-algae is novel.

“If greenhouse gas mitigation using micro-algae is ever going to really be used on a large scale, the nutrient requirement will be huge,” says Hill. “It could really help to solve the problem of disposal of chicken manure, and potentially it could even put greater value on the chicken manure.”

 

 

 

Add comment


Security code
Refresh

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

No events

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.