Energy

Bill Van Heyst grew up on a mixed farm near Grand Bend, Ont. He remembers looking after 500 laying hens – that was the maximum amount allowed under quota at the time. He also remembers switching over the old tunnel ventilated 1960s vintage poultry barn to battery cages from free-range. If he’d only known then that free-range would be fashionable once again…

Published in Barn Management

Summer has come and gone and fall is now here. It’s once again time to take a look at your maintenance program and go over the equipment to ensure everything is running efficiently.

Published in Barn Management
Ceiling insulation and enclosed houses with multiple insulation methods are crucial to the efficient operation of a poultry house.
Published in Barn Management
Backed by the stability and predictability offered by supply management, a green shift is happening across rural Canada. One such farmer at the cutting edge of this new wave is Manitoba’s Abe Loewen. He recently invested in solar panels to heat and cool the family home, alongside his entire barn – home to 12,600 hens.
Published in Producers
Capturing at least some of the heat from stale or “old” air being exhausted from poultry and hog barns is one more step in developing intensive livestock operations with net zero energy barns. The net zero term means a barn is producing as much energy as it is using.

Two poultry barns in Alberta, for example, have installed heat recovery systems that capture heat from air being exhausted from broiler and layer barns and use it to warm cold fresh air that’s being vented into the barn.

The heat recovery ventilators (HRV), used primarily in winter months, take some of the cold edge off the fresh incoming air, helping to reduce heating costs inside the barn. It’s not so dramatic as being able to feel hot air going out, and then being replaced inside the heat exchanger with hot fresh air coming in, but the system can warm up cold winter air by 15 to 20 degrees. | For the full story, CLICK HERE
Published in Barn Management
Canada and Prince Edward Island are working together to take climate action and find solutions to help Canadians save money, reduce energy waste, create jobs, and support healthy communities.

The Minister of Agriculture and Agri-Food, Lawrence MacAulay—on behalf of the Minister of Environment and Climate Change, Catherine McKenna—and Prince Edward Island’s Minister of Communities, Land and Environment, Richard Brown, recently announced a federal investment of $23.8 million to help the people of Prince Edward Island improve energy efficiency in their homes, businesses, industries, and farm operations across the province, as well as reduce carbon pollution in the forestry sector. This joint investment totals $47.8 million.

The Government of Canada’s Low Carbon Economy Leadership Fund will support three of the province’s programs that take climate action.

The first program—Reducing Greenhouse Gas Emissions in the Built Environment Through Energy Efficiency and Fuel Switching—will provide assistance with building retrofits, and it introduces new residential, commercial, and industrial programs with instant rebates on the purchase of energy-efficient products and their installation.

The program will also target fuel switching and process changes in the industrial sector and support carbon-pollution reduction in the agricultural sector.

The second program—Exploring Greenhouse Gas Emission Reduction Opportunities with Agriculture Producers—will support efforts to reduce carbon pollution in the agricultural sector.

The program will accomplish this goal by partnering program and policy experts with the agricultural community, who, together, will explore best practices and will design action plans for growers, leading to more innovation and efficient farming systems.

Finally, the Expanding and Managing Forests for Carbon Sequestration program will also receive funding. This program will enhance the capacity of carbon storage through the conversion and development of new forests on idle and less productive agricultural land.

Prince Edward Island is investing $24 million to support a wide range of projects to help families, businesses, industries, farmers, and landowners make environmentally friendly changes that benefit the economy and the environment. With this investment, Islanders will continue to benefit from a clean environment and make the province a leader in the global fight against climate change.

The Government of Canada’s Low Carbon Economy Leadership Fund provides $1.4 billion to provinces and territories that have adopted Canada’s clean growth and climate action plan, the Pan-Canadian Framework, to deliver on commitments to reduce greenhouse gas emissions.

“The environment and the economy go hand in hand. By investing in PEI to make homes and buildings more energy efficient and by reducing emissions in the agriculture and forestry sectors, we are supporting PEI’s economy, creating good middle-class jobs, and tackling climate change while providing savings for Islanders," said MacAulay.
Published in News
Sustainability is not a buzzword in farming. It’s a day-to-day reality. If you don’t sustain the soil and greater environment on a farm, you won’t have a future. And if you don’t efficiently use – and maybe re-use – energy, water and other resources, you won’t sustain your farm business financially either, again jeopardizing your future.
Published in Layers
Dealing with the high cost of food in the North is a constant challenge for producers and consumers. Through innovation and new thinking, Choice North Farms in Hay River is hoping to make a difference by undertaking the PoultryPonics Dome Project, supported with over $80,000 of CanNor funding.

The announcement was made by Michael McLeod, Member of Parliament (Northwest Territories) on behalf of the Honourable Navdeep Bains, Minister of Innovation, Science and Economic Development and Minister responsible for CanNor.

Choice North Farms is a private egg producing company in Hay River. Their pilot project will integrate vertical hydroponic units and poultry production in a small geodesic dome. This combination will reduce the amount of nutrients and energy required for production, while providing a good supply of quality local fresh produce and meat substitutes.

If the pilot project is successful, this innovative clean technology could be scaled and adapted in other Northern communities, promoting economic diversification, reducing the cost of living, and enhancing the quality of life in remote communities.

"The Government of Canada has long supported the development of the agriculture sector in the North. We are pleased to support innovative technologies that not only grow the economy of Hay River, but also have the potential to provide affordable food to Northern communities," McLeod said. 

CanNor has invested $80,497 in the project through its Strategic Investments in Northern Economic Development (SINED) program, with Choice North Farms contributing $67,910, the Government of the Northwest Territories injecting $6,586 and the Aurora Research Institute providing an additional $6,000. Total funding for the project is $160,993.

"We are thrilled at North Choice Farms to be able to pilot this green technology, thanks to the support of CanNor. We are confident it will allow us to produce more food locally while reducing our carbon footprint and production cost. This is great for our business, for the agricultural sector in the NWT and for Northern consumers, " said Kevin Wallington, business development manager, Choice North Farms.


READ CP's related feature article: Chickens in the greenhouse
Published in Producers
While on a recent farm visit, a poultry producer said something that really resonated with me. We were talking about lighting and he referred to the use of incandescent bulbs as “the good old days.”
Published in New Technology
Hydro One and Niagara Peninsula Energy Inc. recently announced the AgriPump Rebate Program, the first program of its kind in Ontario to offer instant rebates to customers who purchase a high-efficiency pump kit.

The program is ideal for all farming applications, including livestock, greenhouse and vineyards. Upgrading to a high-efficiency pump will improve performance and could save customers up to 40 per cent of their system's energy costs.

"This energy conservation program is focused on helping our agricultural customers manage their electricity and water usage all while saving money," said Cindy-Lynn Steele, vice president, Market Solutions, Hydro One. "As Ontario's largest electricity provider to farming customers, we are committed to offering a variety of energy solutions to help them save on electricity and invest in programs that will meet their important needs while delivering a positive return to their bottom line."

"This collaborative approach with IESO and Hydro One allowed us to be very innovative with this new program," says Niagara Peninsula Energy Inc. CEO and president Brian Wilkie. "We're happy to be able to cater to the agricultural sector and provide this instant rebate program on high efficiency pump sets with advanced control technology."

"Water conservation and high energy costs are a big concern for farmers in the Niagara region and across the province," said Drew Spoelstra, director for Halton, Hamilton-Wentworth, Niagara North and Niagara South, Ontario Federation of Agriculture. "The Save on Energy Conservation Program and this type of cross-utility initiative to launch the AgriPump Rebate Program is great for agriculture."

To be eligible for a rebate under the program, each kit must be between 0.5 hp and 10 hp and must comprise of a pump, motor, variable frequency drive and accessories. Customers can receive up to $610 per constant pressure pump kit. The pumps are quick and easy to install and guard against wear and tear.

The AgriPump Rebate Program is only available to agriculture customers in Hydro One and Niagara Peninsula Energy Inc. (NPEI) service territories. The instant rebate is fulfilled at the point of purchase.

To learn more and participate in the AgriPump Rebate program, visit: www.agripump.ca
Published in News
Canadian farmers are important drivers of the Canadian economy, and also make important contributions in the fight against climate change by adopting sustainable technologies and practices. Clean technology permits farmers to undertake efficient uses of energy and the production of renewable energy, while contributing to the protection of the soil, water and air.

The Government of Canada is committed to supporting the research, development, demonstration and adoption of clean technologies, because they create good jobs for Canadians and help meet Canada's climate change goals.

The Minister of Agriculture and Agri-Food Lawrence MacAulay, recently visited an innovative farm in St-Eugene, Ont., to announce the Agricultural Clean Technology Program. This $25 million, three-year investment will help the agricultural sector reduce greenhouse gas emissions through the development and adoption of clean technologies.

Provinces and territories are eligible to apply for federal funding through this program, and are encouraged to work with industry on projects that focus on precision agriculture and/or bioproducts.

"This investment will help Canadian farmers stay on the cutting edge of clean technology by targeting developments in bioproducts and precision agriculture. Our government has made both agriculture and clean technology a priority for growth in our economy. This new program will contribute to Canada's place as a world leader in agricultural clean technology, helping farmers to develop new and efficient uses of energy, while also protecting our environmental resources and mitigating climate change," said Minister MacAulay.

The Agricultural Clean Technology Program is part of the Government of Canada's suite of clean technology programs and initiatives announced in Budget 2017.

The program will launch on April 1, 2018, and a program guide will be available in the coming weeks.
Published in News
The environmental impacts of livestock and poultry production are a challenge for agriculture. Ammonia, along with greenhouse gases like nitrous oxide, carbon dioxide and methane, are key areas of concern.
Published in Turkeys
Ontario is supporting farmers and agri-food businesses to improve their energy efficiency, save money and fight climate change through two new programs from the Green Ontario Fund, a non-profit provincial agency funded by proceeds from the province's cap on pollution and carbon market.

Chris Ballard, Minister of the Environment and Climate Change, was recently joined by Parminder Sandhu, Green Ontario Fund board chair and interim CEO, and Dr. Helena Jaczek, MPP for Oak Ridges-Markham, to announce the launch of the GreenON Agriculture and GreenON Food Manufacturing programs.

GreenON Agriculture will provide funding to help improve energy efficiency in climate-controlled production facilities such as swine or poultry barns, greenhouses and grain dryers.

Improvements include new or upgraded energy curtains and cover materials in greenhouses and building insulation in walls and ceilings of livestock facilities.

GreenON Food Manufacturing will help encourage food and beverage processing facilities to adopt innovative, cleaner technologies, with opportunities for low-carbon fuel use, waste heat recovery, improved air balance and upgraded refrigeration systems.

Supporting farmers and agri-food businesses in the transition to a low carbon economy is part of Ontario's plan to create fairness and opportunity during this period of rapid economic change. The plan includes a higher minimum wage and better working conditions, free tuition for hundreds of thousands of students, easier access to affordable child care, and free prescription drugs for everyone under 25 through the biggest expansion of medicare in a generation.

“A competitive and sustainable agri-food sector is vital to Ontario’s economy. Helping our province’s covered agriculture and food and beverage processing sectors transition to a low-carbon economy will help ensure their long-term sustainability while supporting Ontario’s commitment to reducing greenhouse gas emissions," said Jeff Leal, Minister of Agriculture, Food and Rural Affairs.
Published in News
The 2018 International Production & Processing Expo (IPPE) had more than 31,000 poultry, meat and feed industry attendees from all over the world, approximately the same as last year. In addition, the show has more than 521,000 square feet of exhibit space and 1,218 exhibitors. Sponsored by the U.S. Poultry & Egg Association, American Feed Industry Association and North American Meat Institute, IPPE is the world's largest annual feed, meat and poultry industry event of its kind.

“This year’s exhibit floor and attendee and exhibitor numbers are a compliment to IPPE’s extensive education sessions, invaluable networking opportunities and diverse exhibits showcasing innovative technology, equipment and services. The excitement and energy displayed by this year’s attendees and exhibitors will continue to ensure the success and growth of future IPPEs,” remarked IPPE show organizers.

The central attraction is the large exhibit floor. Exhibitors displayed the most current technology in equipment, supplies and services used by industry companies in the production and processing of meat, poultry, eggs and feed products. Numerous companies highlighted their new products at the trade show, with all phases of the feed, meat and poultry industry represented, from live production and processing to further processing and packaging.

The wide variety of educational programs complemented the exhibits by keeping industry management informed about the latest issues and events. This year’s educational line-up featured more than 140 hours of education sessions, ranging from packaging trends and technologies, to feed production education, to researchers presenting findings on poultry disease, quality and behavior.

Other featured events included the International Poultry Scientific Forum, Beef 101 and Pork 101 Workshops, Pet Food Conference, TECHTalks program, Event Zone activities and publisher-sponsored programs, all of which have made the 2018 IPPE the foremost annual protein and feed event in the world.

Also, remember to save the date for the 2019 IPPE. With the Super Bowl coming to Atlanta in 2019, the IPPE show dates have been moved to Feb. 12 – 14, 2019.
Published in News
January 3, 2018, Cambridge, Ont. – Canadian incubator company Jamesway was a key contributor to an innovative new hatchery in Guatemala.

Incubadora Regional in the municipality of Escuintla opened its new hatchery last month.

The facility will have an output of 362,880 eggs per week and, most notably, will be totally solar powered.

Roberto Ordonez, owner of the family operated business, welcomed guests to the hatchery’s grand opening and proudly displayed the solar panels and Jamesway machines.

In a press release, Jesus Campa, sales manager for Jamesway’s Latin American region, said, “This is a special project and we are really happy to be involved with it.”

The facility includes 2,000 m2 of solar cells, which are anticipated to produce 100% of the hatchery’s electrical needs.
Published in Producers
July 28, 2017, Shakespeare, Ont. - Faromor Ltd and Faromor CNG Corporation have announced the recent commissioning of one of the first energy independent poultry facilities in Canada.

In affiliation with Toyota Bushoko and YANMAR Micro Combined Heat and Power Systems of Adairsville Georgia, Faromor Ltd and Faromor CNG Corporation have completed the new facility for Steeple High Farms of Tavistock, Ontario Canada.

“This is a timely and welcomed development, distributed generation micro CHP systems deliver high onsite efficiency. They are able to generate the correct amount of power at the right time, making them much more efficient than the electrical grid," said Nicholas Hendry, President of Faromor CNG Corporation.

YANMAR has been perfecting its products and business practices for over 100 years. With units in service in Europe for more than 15 years, YANMAR micro CHP systems have been recognized globally. By utilizing a highly efficient engine and capturing nearly all the remaining energy as heat, the YANMAR micro CHP system is up to 2.6 times as efficient as your current centralized power.

With ease of installation, high reliability and functionality, a reduction in C02 emissions and low operation noise, the YANMAR micro CHP system delivers an energy balance by constantly monitoring power demand and output.

As electrical prices continue to increase, you can gain significant utility bill cost savings by switching to propane or abundant natural gas micro CHP electrical generation for your farm.
Published in Company News
July 26, 2017, McKinney, TX - Global Re-Fuel is an energy technology company that is poised to make a significant impact on poultry farming. Its PLF-500 biomass furnace offers a pioneering farm technology that addresses financial, health and environmental issues facing the agriculture industry.

Global Re-Fuel’s warm-air biomass furnace – now in use on a farm in Texas – converts raw poultry litter into energy, providing heat to broiler houses while creating a pathogen-free organic fertilizer.

“A ton of litter has the equivalent energy content of 67 gallons of propane. Extracting that heat and using the ash as fertilizer is a really good situation, which not only helps farmers, but is also beneficial to the environment,” says Glenn Rodes, a farmer who has used the technology on his Virginia poultry farm.

As the number of poultry operations in the U.S. increases, so do the attendant problems. Today, there are more than 110,000 broiler houses in the country, with that number expected to exceed 131,000 by 2024, according to U.S. Department of Agriculture (USDA) growth projections of the industry.

More than 32 billion pounds of poultry litter were generated in 2015. That number is expected to grow to more than 37 billion pounds per year by 2024, which will exacerbate the soil nutrient overload that contributes to runoff pollution into US waterways.

In addition, poultry farms require a great deal of propane to heat broiler houses, with the average broiler house using about 6,000 gallons of propane each year.

In 2015, more than 8.5 million tons of CO2 were emitted from burning propane to heat broiler houses, and that number is projected to grow to almost 10 million tons by 2024, according to the USDA. Global Re-Fuel’s technology eliminates nearly 100 percent of propane usage, reducing CO2 emissions by more than 70,000 lbs/yr/house.

“The Global Re-Fuel PLF-500 increases farmers’ operating margins, decreases pollution, eliminates propane usage – which reduces CO2 emissions – and improves poultry living conditions,” says Rocky Irvin, a founding member of Global Re-Fuel and a poultry grower for more than 10 years. “It’s good for the family farm and the environment.”
Published in New Technology
In January, new broiler producer Brent Pryce welcomed more than 20,000 birds (14,000 quota) into his brand new barn in Walton, Ont.

“I grew up on a farm, with my grandfather starting with dairy and then cash crops and some pork and beef, and always wanted to get into farming,” Pryce says. “I worked towards this through starting up a few different businesses like road dust control, a rental business, vehicle undercoating, and then decided last summer to take the plunge to buy quota and build a barn.”

Construction started in September 2016 and finished in December 2016.

“Our sons, Russell and Clinton, are the reason Catherine and I did it, so that they can have a future in farming if they want it,” Pryce adds. “We’re starting with the goal of producing 2.2 kilogram birds, with four kilograms as the ultimate goal.”

Pryce chose a cross-ventilation barn design with a heating system that’s brand new to North America – one he’s seen working well in other barns he’s visited. Pryce also believes it will help save on heating bills and electricity, which is quite costly in Ontario, and provide excellent humidity control.

Weeden Environments was a main contractor for the project. Nathan Conley, the firm’s manager for Ontario and the northern United States, says the cross-ventilation design offers a lower building cost than longer and narrower tunnel barns. “Many of Brent’s neighbours and friends are very happy with their cross-ventilated buildings,” he says. “We recommended that two sides have modular side wall air inlets for consistent control over incoming air during minimum ventilation. The air from both sides travels up and along the ceiling [the warmest part of the barn] and therefore it’s conditioned before it reaches the birds and the litter. We then use stir fans to produce consistent temperatures throughout.”

Conley says when warmer weather arrives, a continuous double baffle inlet on one side of the barn will be employed; this set-up creates the same amount of wind chill over the birds as continuous baffle on both sides of the barn. Val-Co HyperMax exhaust fans were chosen for the barn, which Conley says are high-performing and very energy efficient.

A first in North America, the barn’s forced air propane heating and humidity control system is provided by Mabre. Mike Neutel, CEO of Neu Air Systems in Woodstock, Ont., says the systems are used all over the world. The set-up includes two 600,000 Btu Mabre propane furnaces with Reillo burners.

“In poultry barns, typical heating systems are tube heaters and box forced air heaters,” Neutel says. “Some growers have these heaters vented to the outdoors and some vent the products of combustion in the barn.”

He notes the contaminants contained in this air are very harmful to birds, and the exhaust also contains tons of moisture – 0.82 litres of water for every litre of liquid propane burned, and 0.65 litres of water for every litre of liquid natural gas.

Mabre heating systems exit exhaust through chimneys while maintaining a high efficiency of 92 per cent, Neutel notes, while the forced air blowers provide excellent air circulation, which is key in maintaining proper humidity levels. A very even temperature, often within a degree throughout the entire barn, is achieved, but no draft is created. Return air going back to the furnace incorporates fresh outside air through a louver, while heating and mixing this air through an exchanger.



All of this, Neutel says, was important to Pryce. “[He] also commented during his decision process that the low ammonia levels will make it a safe environment for his children to manage the barn when they get older without having to worry about farmer lung,” Neutel adds. Mabre systems maintain humidity between 50 and 60 per cent, even with outside humidity levels of 90 per cent, which Neutel says keeps ammonia levels very low.

Mabre is available with natural gas, propane, wood pellet and wood chip options. More than 200 wood pellet systems have been installed in Quebec poultry barns.

In terms of how popular the cross-ventilation systems will become, Conley notes that in Ontario, producers are moving away from two and three-story barns for easier cleaning and to incorporate modular loading systems. “In the U.S., longer tunnel-ventilated barns are the norm, because the barns are larger and the temperatures higher,” he explains. “With this design – used there and around the world – the barn operates the same as a cross-ventilated barn, where air is brought in via sidewall inlets and exhausted out the sidewalls, but when hotter weather arrives, we gradually transition into tunnel to generate air speed down the length of the barn to create wind chill over the birds to cool them. I think that you’ll begin to see a trend of tunnel-ventilated buildings popping up over the next few years as we continue to see hotter, longer summers and the need to control heat stress becomes greater.”

In late January, Pryce reported in on barn performance and his first flock, which had arrived three weeks prior. “So far, I’m really happy with the heat unit and the environment in there is great. Right now is when you see things start to slide a bit, but it’s the same as the first few days the chickens came in. Usually you don’t really take young kids in a barn, but I’m pretty comfortable with taking my young kids in. The carbon dioxide and humidity levels are bang on.”
Published in New Technology
It’s one of the most, if not the most, efficient and high-tech poultry barn in Canada – a layer barn/egg cooling facility that offsets the consumption of electricity and natural gas heating through the use of solar electricity generation and many cutting-edge technologies.

The total estimated annual electricity and natural gas needs of the facility are between 80,000 to 120,000 kWh (with one GJ of natural gas consumption equivalent to 278 kWh). The existing solar panels generate about 29,000 kWh, so at this point, only about a third of the facility’s power needs are taken care of on-farm – but it’s a facility which holds many keys to how a layer facility might be designed and operated so that it produces as much energy as it consumes, known as “net zero.” Egg Farmers of Alberta describes the site as “establishing precedent for what additional solar (or other energy generation) would be required to get to net zero energy consumption,” and that it will “eventually provide all of the information we need to in order to communicate what a net zero layer barn looks like, and what it costs.”

The free-run aviary barn is owned by the Brant Hutterite Colony (population 105) in Brant, Alberta (near Lethbridge) and houses 13,000 laying hens. To help offset some of the construction costs, the colony received a $250,000 grant from the Alberta government. Its partners, Egg Farmers of Alberta (EFA) and Alberta Agriculture and Forestry (AAF), also secured some funding from Agriculture and Agri-food Canada (through Growing Forward 2) to help make the project a reality.

The idea for a net zero egg facility came about in 2014 after EFA had completed a “life cycle analysis”(an examination of resource use and other factors) of the province’s egg farms. It showed that on-farm energy use represents nearly 15 per cent of the climate change impact of egg production in Alberta. “EFA was and is in the process of building plans and strategies to improve the carbon footprint of egg production and this [project] was a natural fit,” notes EFA Industry Development Officer Jenna Griffin. “Similar projects were initiated with Pork and Milk, but each organization took it in a different direction and I believe we were the only ones that went down the path of building a commercial facility.”

To find an egg farmer partner, EFA sent information to all those in the province known to be building a new facility and narrowed it down to a few that met certain criteria. “For example, we wanted the facility to be near a major urban centre, and be of a size that was representative of an average Alberta egg farm,” says Griffin. “The intent was to give ourselves the best chance of successfully getting to net zero and to ensure that the data generated is applicable to most farms.”

In describing why Brant Colony went ahead, Brant egg manager Darrel Mandel highlights the collegiality within Alberta’s egg industry. “There is a passion for your fellow producer,” he says. “When one has achieved a new and efficient way to better his or her farm…it is shared…For us, it did not seem right to let this pass and not do it for the industry.” The agreement with EFA and AAF required that Brant Colony provide data about barn energy performance and also install a web cam inside the barn, and Mandel says that while “providing data did not seem to be such a big issue” at the time, “agreeing to install cameras, allowing tours, were some big things to consider, and there were multiple reasons why we felt that first off, why should the public see what we or our birds are doing? It seemed like a very strange and out-of-place puzzle piece…[but] then we asked ourselves, what is there to hide? Why is this making us afraid on sharing what we do best, that being caring for our animals?…Adding the cameras would not change our everyday lifestyle. We love our animals…They need to be treated with the best care possible. By doing that, it gives the consumer a healthier egg…and gives us farmers an accomplishment that we are proud of and willing to share, be it on live stream or face to face with the public.”                                                           

MAKING CHOICES
Using input from EFA and AAF, Brant Colony designed the building and purchased very high-efficiency systems and equipment. “The highest priority was for full laying-barn energy metering of electricity and natural gas,” notes AAF engineer Kelly Lund. “The next highest priority was for an investigation into using modern Heat Recovery Ventilator technology to save on heat energy.” Another main priority was choosing high efficiency equipment in the egg cooler. Electricity consumption is slashed low through the use of LED lights, which initially cost more but reduce light energy use by at least 80 per cent compared to incandescents, and have 30 times the lifespan.

The barn is heated through hydronics, a system wherein heat radiates from warm water circulated through a set of tubes, in this case hung from the ceiling. The water is heated using a natural gas boiler and circulated by electrically-powered pumps. Retaining as much heat as possible is very important to keep energy consumption down, but in a poultry barn, extra insulation won’t really help. That’s because barns lose about 80 per cent of their heat in the winter through ventilation – and that’s why a Heat Recovery Ventilator (HRV) was included in the barn design.

HRV’s maintain air quality while preventing large amounts of heat from being exhausted outside through transferring heat from outbound warm barn air to the incoming cold fresh air. The airstreams pass through an elongated grid system and never mix. The amount of heat that can be retained depends on factors such as air velocity and the temperature difference between the airstreams. Moisture must be removed when the exhaust air temperature is reduced to the dew point. “In freezing weather, there is potential for frost build-up with this condensation,” notes Lund. “Most HRVs (including this one) have a defrost cycle they are able to run if required.”

The HRV system will become operational this fall. Lund says they are anticipating some potential problems in colder weather, “not so much with the heat exchanger itself, but with the method of interior air distribution, which is a free air jet to a central redistribution fan system. If the incoming airspeed is not fast enough (which could potentially happen in particularly cold weather when the incoming airflow rate is reduced to prevent freeze-up), the incoming air may not reach the target location within the barn to be properly circulated.” Brant Colony has looked closely at the situation with EFC and AAF, and also hired an independent engineer. Mandel says everyone has concluded they need to run a distribution duct in order to get a good air flow to the centre of the barn. “We have decided it is better if we wait until the flock gets depopulated in early 2017,” he says. “We will still try to do some initial HRV testing once the heating season starts to see what the air distribution pattern looks like, but are prepared to shut it down if we notice problems.”

When might this particular egg production and cooling facility reach ‘net zero’ energy consumption? Lund says once they have one to two years of data monitoring, they will have “a much better sense of the energy use” and of “the amount of solar panels it would take to make it fully net zero.” She adds that Brant Colony’s decision to go fully net zero will likely be based at some future point in time on “whether the marketplace was ready to reward that level of initiative.”

Mandel notes that overall, being involved in the initiative gave him and his Colony colleagues the impression that the barn really could not be efficient enough, which spurred them to continuously look for efficiencies in all aspects of construction and operation. Besides the HRV system which hasn’t begun operating yet, Mandel says everything else is functioning well. “We can see the energy loads of the equipment in the control system and in the boiler room, and the cooler unit and solar are showing positive signs that the research was a worthwhile cause.”
Published in Profiles

 

Chickens, like all vertebrates, are governed by a circadian rhythm that is governed by the natural light/dark cycle of day and night. As such, chickens mostly rest and are inactive at night, especially when it is dark.  Although they do rest during the daylight hours, most of their feeding and activity is performed during this time.   

Studies show that just as in humans, major abrupt changes to the day/night cycle of the chickens, such as waking up the chickens at night with loud noises, will lead to stressed and anxious chickens.

In addition, studies have shown that loud noises such as found near airports, rail road tracks or loud hydraulic or pneumatic equipment and machinery close to the chickens leads to lower egg production, stunted growth, higher blood pressure, stress and fatigue in the birds.  A study has shown that loud noise simulating noisy ventilation fans and operational machines found at slaughterhouses led to increased plasma corticosteroids, cholesterol and total protein.1 This study recommended the control of noise pollution near the chickens and chicks.

Other studies show that noise levels past the 85 dB level can lead to a decreased feed intake of between 15 to 25 per cent.  Lower feed intake stunts chicken growth — something the poultry farmer or processor does not want.

But all is not lost. Below are some tips and advice to reduce the noise level to an acceptable and healthier level leading to happier and healthier chickens – both psychologically and physically.

First identify the sources of noise pollution equipment. Use a sound measuring tool if necessary.

  1. Erect sound barrier secondary glazing in windows.
  2. Establish your chicken farm in a quiet area away from airports and industrial areas and rail yards.
  3. Maintain your ventilation fans and feeding machines making sure they are not producing excess noise.
  4. Try to buy machines that produce the least noise possible.
  5. Avoid repairs and renovations with noisy equipment, especially during the rest and sleep hours of the chickens
  6. Muffle noisy equipment.
  7. Make sure that family members do not honk the car horn too often during chicken sleep hours.
  8. Investigate “active noise control” - a noise cancelation anti-noise system that produces sound waves of the same amplitude as the noise pollution, but in opposite polarity causing a cancelling of the noise pollution.
  9. Train employees and family members to respect the sleep hours of the chickens - they should not be screaming out to each other, joking etc. around sleeping chickens.

We simply see that it’s about common sense and respect. We need to respect the fact that chickens are living beings that need many of the same things that we need, including a good night’s sleep and some peace and quiet during the day. We just have to sensitize ourselves by imaging how we feel when we are woken up while we are asleep. We feel grouchy the next day and are less productive in the office. If we internalize this reality, we will treat the chickens with more respect, which not only is the proper thing to do, but it is actual good business sense.

The results will be healthier, bigger chickens.  Thus, everybody gains by respecting the chickens needs not to be exposed to high levels of noise pollution: the commercial poultry farmer, the backyard chicken farmer enthusiast, the processor and the chickens.


Ronnie P. Cons is EVP of C&C Packing Inc., a leading Canadian distributor of meat and poultry. He can be contacted at This e-mail address is being protected from spambots. You need JavaScript enabled to view it .  Visit at www.CCpacking.com

 

1Stress in Broiler Chickens Due to Acute Noise Exposure (2009) Chloupek et. Al  Acta Veterinaria Brno, 78:93-98.

 

Published in Welfare
Page 1 of 3

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

PIC Producer Update
Wed Dec 12, 2018

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.