Poultry Production
February 24, 2017, Lethbridge, Alta – When it comes to successful brooding, it is not one size fits all. The Lethbridge Quality Brooding Workshop will explore what works and what doesn’t when it comes to maximizing flock growth, health, and welfare. This practical workshop takes place near Lethbridge on Tuesday, March 28, 2017.

The workshop will be led by instructors who understand the importance of links between bird health, biology, and barn results. They will discuss ideal barn preparation, the key components of brooding management, identifying sick birds, the flock health and economic impact of a decision to cull specific birds, and more!

Participants will go into the barn to discuss barn preparation and tools to measure environmental conditions; hear first-hand accounts of what works and doesn’t work in the field; and learn to assess external chick quality and how this relates to internal conditions of chicks. 

The program will run from 9 a.m. to 3:30 p.m. at a farm located just east of Lethbridge. Registration is $60 per person and includes lunch. Additional registrants from the same farm will be charged $50 each. Please contact the Alberta Chicken Producers office at 780-488-2125 to register.

There are a limited number of spots available, so register early to avoid disappointment.

If you would be interested in participating in a future Edmonton-area Quality Brooding Workshop, please contact the office. Interested parties will be placed on a contact list. If there is early interest, officials will plan for this workshop to take place shortly after the Lethbridge workshop.
Published in Bird Management
February 24, 2017, Mississauga, Ont – Maple Leaf Foods Inc. recently reported net earnings of $181.7 million for the year ended December 31, 2016.

This is up from $41.6 million in net earnings reported at year-end 2015.

“We finished 2016 with a strong quarter sustained by solid commercial performance,” said Michael H. McCain, president and CEO of Maple Leaf Foods. “With the combination of our increasingly competitive cost structure, and commercial strategies that intersect with important consumer needs and trends, we are well positioned for future profitable growth.”

The company’s Meat Products Group, which includes value-added fresh poultry products, reported a 1.2 per cent increase in sales, earning $3,316.5 million for 2016. Fourth quarter sales alone were $824.4 million, a decrease of 5.1 per cent from the previous year.
 
Margins in prepared meats improved due to lower operating costs across the network. Earnings in fresh poultry declined slightly as industry processor margins receded from record levels in the fourth quarter of 2015.  

Prepared meats sales declined slightly in response to a price increase in the first quarter but strengthened as the year progressed. Fresh poultry sales increased due to stronger volume and an improved sales mix.
Published in Companies
February 22, 2017, Victoria, BC – Due to an underwhelming response by users to register their wells, the province has extended its waiver of the application fee to December 31, 2017.
 
The new Water Sustainability Act took effect February 29, 2016 and includes licensing requirements for all non-domestic groundwater users. As a result, all wells used for irrigation and livestock watering must be registered. READ MORE
Published in Business & Policy
February 22, 2017 – The program for the 3rd Annual Western Poultry Conference is out.

The conference will take place in Red Deer on February 27, the day before the Alberta poultry industry’s annual meetings.

While intended for all poultry producers, broiler producers will find this year to be very well worth their time. There will be presentations on Salmonella management, coccidiosis, selecting a barn sanitation program, euthanasia, antibiotic-free production, ventilation strategies for extreme conditions, and more.

The presentations are designed to be practical and to give producers plenty to think about.
 
Participants must register for this event independent of registration for the annual general meetings. Please go to the meeting website to register (www.westernpoultryconference.ca). Tickets are reduced for groups of four or more.

Click here to view the full program.

 

Published in Business & Policy
February 17, 2017 – Biomin welcomed 145 delegates from 23 countries representing the feed and poultry sectors over several days in mid-February in order to address how to solve the antibiotic-free production puzzle.

With the subheading of “Guidelines for a responsible use of antibiotics in the modern broiler production,” the event afforded participants the opportunity to consider a host of different viewpoints.

Expert speakers explored the role of genetics, nutrition, biosecurity and farm management.

Highly interactive exchanges throughout the event converged on the idea that a holistic approach is the way forward in reducing antibiotics while maintaining high performing flocks.
Published in Health
February 16, 2017 – Up to 23,000 chickens are expected to be culled after a suspected case of bird flu in Suffolk.

A control zone has been set up around Bridge Farm in Redgrave, UK, after the H5N8 Avian Influenza virus was identified, the government said. READ MORE
Published in News
Health leaders around the world are using words like “historical” and “possible turning point” to describe a declaration passed by the UN General Assembly aiming to slow down the spread of bacteria that have become resistant to antibiotics. The declaration requires countries to come up with a two-year plan to protect the potency of antibiotics. Countries also need to create ways to monitor the use of antibiotics in medicine and agriculture, start curbing that use and begin developing new antibiotics that work.
Published in Health
Growing volumes of data are being collected throughout the food production chain. But although this data could present big opportunity for agriculture, it’s not being used to its full potential, according to the international sales director of a software company that specializes in the protein industry.     
Published in New Technology
According to Statistics Canada (StatsCan), over the last several decades, the per capita consumption of animal protein in Canada has changed dramatically. Figure 1 shows the consumption of three different meats from 1980 to 2014.
Published in Meat - Broilers
Truss plate corrosion can be an issue in barns - but it doesn’t have to be. The life span of truss plates, hangers, screws and nails in the truss system depends on the materials used, barn design and maintenance.
Published in Housing
In several parts of Ontario, poultry production is quite concentrated, which doesn’t bode well for preventing spread of disease in the event of an outbreak. Because of that, Tom Baker, project manager and incident commander at the Feather Board Command Centre (FBCC,) is co-ordinating a special project.
Published in Health
February 9, 2017 – The global poultry probiotics market size was estimated at over $750 million (US) in 2015 and is likely to be valued at $1.2 billion (US) by 2023, according to Global Market Insights.

The global probiotic ingredients market size is likely to cross $46 billion (US) by 2020.

North America, especially the U.S. probiotics market for poultry, is likely to grow at steady rates owing to increase in meat consumption, particularly chicken. Europe is also likely to grow at steady rates owing to ban on antibiotic feed supplements. Asia Pacific probiotics market is likely to grow owing to increase in awareness of benefits in meat production.

Globally, antibiotics are used to prevent poultry diseases and pathogens required for improving egg and meat production. Dietary antibiotics used in poultry applications have encountered some problems such as drug residues in bird bodies, drug resistant bacteria development, and microflora imbalance. Increasing application in poultry market is likely to counter the aforementioned factors and promote demand over the forecast period.

Probiotic species belonging to Bacillus, Streptococcus, Lactobacillus, Enterococcus, Bifidobacterium, Candida, Saccharomyces and Aspergillus are used in poultry applications and are expected to have beneficial effects on broiler performance.

Poultry feed accounts for almost 70 per cent of the total production cost and, therefore, it is necessary to improve feed efficiency with minimum cost. In the poultry industry, chicks are subjected to microflora environment and may get infected. Broiler chickens can also succumb to stress owing to production pressure. Under such a scenario, synthetic antimicrobial agents and antibiotics are used to alleviate stress and improve feed efficiency. However, antibiotics in poultry applications are becoming undesirable owing to residues in meat products and development of antibiotic resistant properties.

Europe has banned use of antibiotics as a growth-promoting agent in poultry application owing to several negative effects. These aforementioned factors are expected to drive probiotics demand in the poultry market. Antibiotics failure to treat human diseases effectively has led the European Union (EU) to ban low doses of antibiotics in animal feed. This factor has also led the U.S. government officials to restrict antibiotics use in animal feed.

Poultry probiotics products are available in the form of power and liquid feed supplements. Commercial products in the market may be comprised of a single strain of bacteria or single strain of yeast or a mixture of both. Chicks/broilers/layers require a dose of around 0.5 kg per ton of feed whereas breeders require close to 1 kg per ton of feed.

The global probiotics market share is fragmented with the top five companies catering to more than 35 per cent of the total demand. Major companies include Danone, Yakult, Nestle and Chr Hansen. Other prominent manufacturers include Danisco, BioGaia, Arla Foods, General Mills, Bilogics AB, DuPont, DSM and ConAgra.
Published in Emerging Trends
February 2, 2017, Atlanta, GA – More than 31,000 poultry, meat and feed industry leaders attended the 2017 International Production & Processing Expo (IPPE) from all over the world.

In addition, the show featured more than 533,000 of net square feet of exhibit space and 1,275 exhibitors.

Sponsored by the U.S. Poultry & Egg Association, the American Feed Industry Association and the North American Meat Institute, IPPE is the world's largest annual feed, meat and poultry industry event of its kind.

“This year’s tremendous exhibit floor and attendee and exhibitor numbers are a compliment to IPPE’s unmatched education programs, ample networking opportunities and diverse exhibits,” the three organizations stated in a joint press release. “The excitement and energy displayed by this year’s attendees and exhibitors will continue to safeguard the success and growth of future IPPEs.”

The central attraction was the large exhibit floor. Exhibitors demonstrated the most current innovations in equipment, supplies and services used by industry firms in the production and processing of meat, poultry, eggs and feed products. Numerous companies highlighted their new products at the trade show, with all phases of the feed, meat and poultry industry represented, from live production and processing to further processing and packaging.

A wide variety of educational programs complemented the exhibits by keeping industry management informed on the latest issues and events. This year’s educational line-up featured 25 programs, ranging from a conference on Listeria Monocytogenes prevention and control, to a program on FSMA hazard analysis training, to a program on whole genome sequencing and food safety implications.

Other featured events included the International Poultry Scientific Forum, Beef 101 Workshop, Pet Food Conference, TECHTalks program, Event Zone activities and publisher-sponsored programs, all of which made the 2017 IPPE one of the foremost annual protein and feed event in the world.
Published in News
The Poultry Industry Council (PIC) funded several research projects in 2016.  The following project addresses the layer sector of the poultry industry directly.
 
Grégoy Bédécarrats and his research team from the University of Guelph will be performing research which investigates the control of reproduction in poultry, within the context of a continuously evolving genetic makeup.

HPG axis
Specifically, the study will seek to reveal whether intensive genetic selection of commercial layer chickens has impacted control of the reproductive or HPG axis. HPG axis refers to the hypothalamus, pituitary gland, and gonadal glands as a single system because these glands often act in concert.

In an interview, Bédécarrats described recent research in which he observed that modern strains of layers no longer fully fit the accepted neuroendocrine models.  He hypothesized, “While doubling egg numbers laid per hen, the past 50 years of genetic selection may have altered the normal physiological controls.”  

Key questions
Bédécarrats highlighted the key questions being formulated through recent analysis of commercial layers, “Why do they tend to mature without stimulation?  Why do they display extended laying persistency?  Is there desynchronization of the ovulatory process?”

Purpose of the strain
The proposed research aims to answer these questions by comparing a strain not selected for egg production versus a modern commercial strain selected for egg production.    The approach is to compare production parameters and relate these to molecular events.  Differences in the function of the HPG axis between the two strains will be identified.  Bédécarrats explains “Identifying differences between strains will give insight into the understanding of the actual mechanisms responsible for maturation, ovulation and persistency of lay.  This will show how genetic selection may have impacted the reproductive axis.”

Study objectives
The initial objective of the study will be to determine the relative importance of photostimulation versus metabolic status to initiate sexual maturation in commercial layers.  The study will then go on to investigate if a previously observed second estradiol peak is specific to modern commercial strains and correlated with laying persistency.  The study will conclude by determining if the second estradiol peak is the result of activation of the entire reproductive axis as opposed to independently ovarian activation.

Outcomes
“Outcomes of this research will assist in adjusting and/or refining on-farm management procedures and could help update codes of practice as it relates to layer flock turnover,” Bédécarrats said.

This research is funded by the Natural Sciences and Engineering Research Council of Canada’s Discovery Program and the Ontario Ministry of Agriculture, Food and Rural Affairs - University of Guelph Research Program.
Published in Genetics
Every day nearly 62,000 cockerels are culled in Canada. That’s 22.5 million birds each year. While the number sounds shocking, it is the harsh and unavoidable reality of Canada’s egg industry. In the developed world, that number reaches over a billion chicks. The birds that commercial egg farms purchase are bred specifically for egg, not meat, production, which means that while the females are highly coveted, male chicks have absolutely no value.

This is not only a serious animal welfare issue, but also an issue of waste. But technology developed by the Egg Research Development Foundation (ERDF) could change all that.

Hatcheries in Canada run a tough business. According to Tim Nelson, Chief Executive Officer of the Livestock Research Innovation Corporation (LRIC), when you take into consideration their losses, they run at 50 per cent efficiency. For one, some 10–15 per cent of all eggs are infertile, and hatcheries are forced to dispose of them as waste. Of those that do hatch, cockerels make up 50 per cent.  The chick must then be identified, culled and disposed of by the hatchery. On top of the waste and animal welfare issues this raises, the hatchery must foot the bill for their incubation, as well as the labour and energy associated with raising them.

In 2007, the industry started working towards a solution. Egg Farmers of Ontario (EFO) has been funding research for a new technology, tentatively called “Hypereye,” that uses hyperspectral imaging to identify infertility and gender in day-of-lay eggs. If successful, Hypereye could be a game changer for Canada’s egg industry.

Hypereye uses spectroscopy, which is technology that allows hatchery personnel to identify eggs that are infertile. More importantly, though, it allows them to determine gender of the day of lay. Since day-of-lay eggs are essentially the same as regular table eggs, early identification could mean a new source of eggs. The potential, said Nelson, is huge.

Dr. Michael Ngadi, a food and bioprocess engineer at McGill University, is the head researcher on the project. In a recent interview, he explained how the Canadian technology differs from similar technology being developed around the world. A team in Germany, he said, is also using spectroscopy, although their approach is much different.

“We combine spectro-image data, so that’s why we call it the hyperspectral imaging,” explained Ngadi. “It’s a combination of broad spectral image signatures that we get from the egg. Then we put that through a fairly complex mathematical analysis where we are using some deep learning techniques to identify or relate those spectral and image data to the specific attributes that we are looking at – in this case, whether it is fertile or not and whether it is male or female.”

Dr. Ngadi said that they have chosen not to go into the infrared range for a number of reasons, mostly because he doesn’t see it as commercially feasible to operate at that wavelength. “Also because you will not be able to get an image at that wavelength,” he added.

Hypereye is almost ready for market. In fact, Nelson said that it could be ready as early as mid-2017. At present, the bench-scale model operates at an accuracy of 99 per cent. On a commercial scale, Hypereye must be able to process 30,000–50,000 eggs per hour. Currently, it’s nowhere near that speed, said Nelson, although he’s confident that speed won’t be an issue. “It’s just a case of ramping up the software,” he said. “Speed is important, but accuracy is more important. Right now we’re not worried about speed.”

The Poultry Industry Council in Ontario first provided funding for the project in 2007. Preliminary results were so successful that EFO decided to invest in further research, which is now being conducted through the McGill University in Montreal.

Currently, ERDF is looking for a qualified commercial partner who will assist taking the technology into production, and then market and service it around the world. ERDF believes that there will be considerable interest in the technology, especially since the approach they take keeps the eggs intact. Other systems, explained Nelson, involve invasive DNA testing. Not only is DNA testing time consuming, but it also requires putting a hole in the egg. There is greater risk of contaminating the eggs with bacteria and transmitting disease between eggs, and partially incubated male eggs and incubated infertile eggs have to be destroyed.

Since Hypereye will enable hatcheries to determine gender and infertility on the day of lay, eggs need not be wasted. Theoretically, said Nelson, the egg industry could take a large number of hens out of production. This is unlikely, though, especially as new egg markets are opening up. One such market, said Nelson, is the pharmaceutical industry. In recent years, EFO committed $1 million to Relidep, an antidepressant drug that requires thousands of fertile eggs each day. Nelson said the food processing market will take them as well.

Harry Pelissero, EFO’s general manager, says Canadian egg producers need not worry about production loss. “The non-female eggs could be used either for other uses such as table or breaker markets, vaccine egg production or for production of anti-depressants,” he said. “Given the ever-increasing use of eggs as a source of protein, existing egg farmers should not be worried about any reduction of egg production as a result of the implementation of this process.”

While the announcement is an exciting one for the industry, it could be a while before Hypereye is available commercially for large-scale operations.

“There are a whole lot of variables in the industry that we need to account for when we are actually putting this thing out there,” said Nelson. “Age of flock may make a difference, what the flock’s being fed may make a difference, and genetics of the flock may make a difference. So there’s a whole lot of things we have to take into account.”

The long and the short of it, though, is that the technology is there. “And because this is day-one and because it’s non-intrusive, it’s really important technology,” said Nelson.

Pelissero agreed. “We are getting closer to building a prototype, testing and will be in a position begin to take orders within the next two years,” he concluded.
Published in Production
Dec. 9, 2016 - Algae nutritional products from Alltech are now registered with the Canadian Food Inspection Agency (CFIA) for use in the diets of pigs, dairy cows and laying hens. The DHA found within algae can naturally enrich pork, milk and eggs. Canadian dairy, swine and layer producers will be able to market their DHA-enriched products as value-added functional foods, meeting consumer demand for nutrient-rich foods and beverages.
 
“Consumers are becoming increasingly nutrition-focused, seeking out foods that provide specific health benefits when shopping at the supermarket,” says Nikki Putnam, a registered dietitian nutritionist at Alltech. “They’re demanding more nutrition out of each bite while asking farmers and the food industry to keep their food fresh and flavorful. Alltech’s ForPlus and All-G Rich dried micro-algae fermentation products give producers the opportunity to increase the nutrient content of pork, milk and eggs without changing the flavour and quality consumers expect.”
 
Algae are gaining attention for their application to the feed and food industries as a highly sustainable source of DHA. Docosahexaenoic acid, or DHA, is an omega-3 fatty acid naturally found in some species of algae and in fatty fish used for fish oil. Research has demonstrated DHA’s importance as an essential nutrient for health at all stages of both human and animal life. In humans, DHA is essential for brain and eye development. Plentiful levels of dietary DHA are also linked to improved cognitive function and learning ability in children, including benefits for children with ADHD, as well as reduced risk of coronary heart disease, depression and Alzheimer’s disease.
 
As such, Alltech is continuing to expand its algae DHA plant, one of only two plants commercially producing high-DHA heterotrophic microalgae. The facility, which is capable of producing approximately 15,000 tons of algae per year, has already been updated since its opening in early 2011.
 
“Alltech’s newly received approval from the CFIA on ForPlus and All-G Rich is an incredible step forward in sustainable animal agriculture,” says Stuart McGregor, Alltech Canada general manager. “This will provide the Canadian market with a renewable and competitive advantage to enrich pork, milk and eggs with DHA while also offering a sustainable alternative to current DHA omega-3 fatty acid sources that are depleting global fish stocks.”
 
Alltech algae products ForPlus and All-G Rich will be available through Canadian feed suppliers. For more information, contact your local Alltech Canada representative at http://go.alltech.com/the-dha-opportunity
Published in Company News
Any method to preserve a species’ genetics is complex and costly. For poultry, raising generation after generation of a certain group of birds is one method, but because those who have been doing this don’t really receive any benefits that outweigh the costs, many are not continuing with it. In addition, relying on live flocks as a way to preserve genetics is also quite risky because something like a disease outbreak or a fire could always come along and cause the DNA to be lost forever.

A solution is therefore needed, preferably one that allows for the preservation of as much avian genetic diversity as possible. This will allow for genes from heritage breeds to be fully examined and characterized – genes which may hold great future promise in commercial breeding in terms of important traits like resistance to disease. American geneticist Dr. Janet Fulton has already demonstrated that there are some genes present in heritage poultry breeds that are not present in commercial breeds, and some of this heritage DNA (very much at risk of being lost at this point in time) may become crucial in future commercial poultry breeding enhancements.

But how is a central, efficient and secure way to preserve poultry genes to be developed? Cryopreservation (slow freezing) was tried because it works for mammalian sperm, eggs, embryos and more. But it turned out that cryopreservation of avian sperm significantly lowers its ability to fertilize eggs, and avian sperm doesn’t contain the entire bird genome anyway. While avian embryonic cells do, cryopreservation doesn’t work with them either.

Finding a reliable way to preserve poultry genetics is also challenging because of the trickiness involved with manipulating bird eggs and sperm, explains Dr. Carl Lessard, curator of the Canadian Animal Genetic Resources program (CAGR) at the University of Saskatoon in Saskatchewan. “What’s required is to open a small spot in an egg shell and deposit desired embryonic cells into the host embryo without killing it,” he notes. “That’s very difficult. So, while freezing embryonic blastodermal cells is a good way to preserve the entire genome of a species, it just doesn’t allow for easy usability of that genome in poultry.”  

In 2006, Dr. Fred Silversides (now retired from Agriculture and Agri-Food Canada) tried some new thinking. What about preserving the gonadal tissue (testicular and ovarian tissue) where sperm and eggs are created and stored? Might it be possible to develop a relatively efficient way to remove gonads, chill and store them, and then thaw and transfer them, resulting in the hatching of a chick with the desired genetics and not any from the surrogate mother hen?  

Instead of the slow freezing involved with cryopreservation, Silversides tried vitrification, where a gonad is removed from a day-old chick, treated with lots of cryoprotectant and chilled rapidly through a plunge in liquid nitrogen. The gonad is never technically frozen (there’s no ice crystal formation) but maintained in a glass-like (vitreous) state at a very low temperature. Once thawed, the gonad is surgically transferred to a day-old chick recipient that has had its gonad totally or partially removed.

At the same time, Silversides and his team developed ways to preserve the viability of the tissues during and after thawing and transplantation, such as treating the recipient chick with immunosuppressants to avoid rejection of the graft.

Success was achieved! Over time, the work of Silversides and his colleagues at AFFC was transferred to CAGR, where Lessard became curator in 2014. Since that point, Lessard and his team have been working hard to move all aspects of poultry genetics preservation forward.



What’s happening now
The technique for chicken testicular tissue is now well-established, and Lessard and colleagues are currently optimizing Silversides’ technique for ovarian tissue. “The ovarian grafts are not growing the way we need them to, so we are now trying to find a new chicken line recipient,” Lessard explains. “The bird line we were using likely has an immune response that’s too high. We didn’t see this with the testicular tissue grafts in that line.”

With turkeys, Lessard has established a reliable protocol for freezing gonads from newly-hatched chicks, with the next step to optimize the surgical procedures and immunosuppressive treatment to obtain successful growth of the grafts. In terms of the team’s preliminary genetic analysis, they’ve found turkey breeds have a lot of genome ‘admixture’ (many shared genes alleles between breeds), but more samples are needed to confirm this finding. Shared alleles, says Lessard, make it harder to characterize the entire genetic diversity of turkeys and establish what is, and what is not, pure turkey genetics.

Once vitrification of male and female gonadal tissue for chicken and turkeys is complete, the team will launch a national call in 2017 to request genetic samples of fertilized eggs from commercial and heritage breeds. They will also move on to other poultry breeds such as ducks.

Lessard and his colleagues are also creating a germplasm repository (sperm, eggs, gonads, embryos) for other types of livestock from all across Canada. “We are looking for donations from purebred animals in all areas of the country,” he says, “including bison, cattle, sheep, goat, horse, pig, deer, elk and more. It’s going well, and we’re getting more and more participation from livestock associations and individual producers. Right now (in September and October 2016), we are in Ontario and Quebec gathering samples from sheep, goat and beef cattle.” A website letting the public know what has been contributed is being developed and Lessard is looking for more Canadian and international graduate students to tackle all the work.

“We need many samples for poultry and everything else produced in Canada,” he explains. “Genetic characterization of commercial and heritage poultry breeds is extremely important and we need to establish the true diversity of the different poultry breeds produced here. The number of heritage breed birds is shrinking every year, and it’s very important to capture genetics as soon as possible.”

Silversides’ vitrification preservation technique has so far been adopted by the United States Department of Agriculture ‘Agricultural Research Service’ Germplasm Resources Information Network (GRIN). Lessard says individuals at that organization have already used the technique to preserve the genetics of several U.S. commercial and heritage breeds. In terms of other groups beyond CAGR working on gonadal transfer, a team in Hungary is currently working to master it.

To make is easier for them and other researchers around the world learn how to successfully complete surgical transfer of vitrified gonads, Lessard has been working on a free tutorial e-book featuring detailed video and audio descriptions of each step. “This strategy (vitrification and gonadal transfer technique) has great potential to preserve the entire genome of a poultry breed and also use that genome fairly easily,” he explains. “We want it to be available to everyone.”
Published in Genetics
Dr. Elijah Kiarie is a newly appointed Assistant Professor in the Department of Animal Bio–sciences at the University of Guelph. Dr. Kiarie has recently secured partial funding for two research projects and will be investigating the optimal feed structure for pullets. His research will be designed to investigate optimal feed structure (by using oat hulls and limestone particle size) for enhanced gut and skeletal development in pullets and subsequent effects on egg production, hen bone health and integrity and livability.

Oat hulls
Modern layer diets have been refined to improve intake and efficiency. The implications of these strategies are diets with low fiber and overall structure.  Poultry require a certain amount of fiber for optimal development and physiology of the gastrointestinal tract. Low fiber diets have negative consequences on the development and functioning of the gut, particularly the gizzard. Addition of insoluble fiber could be a practical solution of increasing diet structure.  

In an interview, Dr. Kiarie explained the problem at hand. “It remains unknown whether it is beneficial to introduce fiber at the rearing phase or laying phase, or indeed both phases,” he said.  

 “Modern pullets have a propensity to reduce intake at the onset of lay. Stimulation of gut development at the pullet phase may lead to birds with improved appetite for satisfactory laying phase performance,” he said. “This may be particularly strategic for alternative housing where the birds may have increased nutrient requirements over and above normal maintenance and
still meeting the requirements for egg production.”

Diets will be designed with oat hulls to create feed structure and fed to pullets throughout the grow-out period. During the laying phase, birds will be maintained on diets with or without the addition of oat hull. Gut and skeletal development will be evaluated during the grow-out phase and egg production and quality will be measured during the laying phase.  

Limestone particle size
Proper skeletal development is essential for high levels of egg production in all poultry housing systems.  

“Studies to improve skeletal health often focus on manipulating the birds’ environment and nutrition during the layer phase.  Unfortunately, at this phase it might already be too late to improve bone quality,” Dr. Kiarie explained.  “Earlier interventions by stimulating bone development at pullet stage could lead to a bird with sound skeletal structure for satisfactory laying phase performance in alternative housing.”  

“Pullets undergo fast bone formation during rearing, and nutritional strategies during this phase could have a major impact on bone quality and skeletal integrity of hens,” he added.  

The proposed research will evaluate the effect of limestone particle size on pullet skeletal development and subsequent effects on layer performance, bone health and integrity in hens housed in conventional and furnished cages.  

Dr. Kiarie said the limestone particle size will be used as a method of manipulating the calcium supply form to create feed structure. Diets differing in limestone particle sizes will be formulated and fed to pullets throughout the grow-out period. During the laying phase, bird diets will be maintained in conventional and furnished cage housing systems. Skeletal development will be evaluated during the grow-out phase.  Egg production and quality and bone health and integrity will be measured during the laying phase.  

 “The long term objective is to explore nutritional means to improve gut health and function, skeletal integrity and feed utilization in pullets and layers,” said Dr. Kiarie in describing the anticipated outcomes of these studies. “Research results will be directly transferred into practice through partnerships with feed manufacturers and allied industries that serve the Canadian egg producers.”

Components of this research will be funded by the Egg Farmers of Ontario,  Egg Farmers of Canada, and the Canadian Poultry Research Council.
Published in Eggs - Layers
Egg shell quality is extremely important to table egg producers.  Egg shell quality has a direct impact on profitability because any broken, cracked, or misshapen eggs will result in a loss to the producer.  Some of the factors that influence egg shell quality include: nutrition, feed management, stress, the age of the hens, and mechanical equipment.  Understanding these factors that affect shell quality will have a positive impact on your bottom line.

Nutrition
Nutrition plays a significant role in minimizing cracks within the flock.  A properly balanced feed will give the laying hen the nutrients she requires to produce an egg a day, along with the shell needed to protect that egg.  The three main nutrients that nutritionists typically take into consideration when shell quality problems arise are calcium, phosphorus, and vitamin D3.  These three nutrients each play a crucial role in shell formation.  The calcium status of a laying hen is very important because the hen must consume enough calcium to lay down an egg shell each day, as well as supporting her health and wellbeing.  In addition to this, she must replenish the calcium stores within the body so calcium is available for use the next day.  The calcium required to create the shell is obtained from two different forms, the medullary bone reserves and directly from the feed she consumes.  Medullary bone reserves of calcium are located within the long bones of the body and the hen is able to mobilize these reserves to supply part of the calcium required to produce the egg shell every day.  The remaining calcium required for the egg shell is obtained from dietary calcium comes from the digestive tract and is directly absorbed into the bloodstream.  A deficiency in calcium will cause an immediate decrease in shell quality and if prolonged, the medullary bone reserves can become depleted.  A hen in this state will begin to suffer a deterioration in egg shell quality, mobility problems, and soft bones.  Phosphorus is also important as it plays a key role in the storage of calcium in the medullary bone reserves.  Calcium is stored in these reserves as calcium phosphate, and for that reason phosphorus must be available in order for these reserves to be replenished.  Finally, vitamin D3 plays an important role in egg shell quality because it promotes calcium absorption from the digestive tract into the blood stream of the bird.  Once absorbed, the calcium is available to become part of medullary bone reserves to be laid down as part of the shell or for maintenance calcium requirements used to maintain the existing skeletal frame of the hen.  Additional calcium, phosphorus, and vitamin D3.   can be added to the diet when egg shell quality issues arise on farm, however this should be done in close consultation with your nutritionist as any imbalances in these nutrients can cause further deterioration to egg shell quality.   While additional nutrients may help solve the problem, nutrition cannot be looked at in isolation as many factors contribute to these situations.  For example, if the hen is not consuming enough feed, changes need to be made in the barn to encourage this consumption.  Because shell quality issues are typically complex and have many contributing factors, nutritionists will focus on balancing the nutrition, while also considering environmental issues that may be contributing to the problem.

It takes approximately twenty-one hours for the shell to be laid on the egg and a significant portion of this high calcium demand takes place when the lights are off.  Consequently, feed management plays a key role in maintaining shell quality.  It is important to make sure that the feeders are being run close to when the lights go off in the barn to ensure the hen is able to consume adequate calcium to support egg shell formation through the dark period.  In addition to the importance of feed timing, the form of calcium being provided in that feed can impact the ability of the hen to create a high quality egg shell.  Providing large particle calcium as a portion of the calcium in the feed will give the hen a source of calcium that is retained for a longer period of time.  This is because large particle calcium is less soluble than fine particle and will remain in the gizzard longer, making it available during the dark period when the bird is not consuming feed.  Research has proven that the hen also has a specific appetite for calcium and her appetite changes throughout the day.  By providing a portion of calcium as large particle calcium, the hen is able to selectively regulate her calcium intake throughout the day as her appetite for calcium changes.  In the late afternoon, when the demand for calcium is highest in the hen, having large particle calcium available allows her to choose to increase calcium consumption to meet her needs.  

Stress
Stress is known to cause disruption to the egg formation process which can lead to misshapen eggs, wrinkled and thin shells, as well as discoloured shells in brown egg strains.   Stresses in the barn can come in many forms, including disease, heat stress, excessive and sudden noises, mismanagement or failure of lighting programs, poor barn environment, and aggression from other birds.  These types of stresses can cause a disruption to the egg formation process because they will cause the hen to either hold on to her egg or lay the egg too soon.  Because stress influences the timing of the egg being laid, there can be an ongoing effect in the following days as the sequence of eggs has been disrupted and it takes time to get this corrected within the hen’s body.  Taking the time to observe what is happening in your barn will help you in the long run.  This includes ensuring the inlets and fans are providing adequate air flow, double checking that the lights are going on and off at the times they are set for, and observing bird behavior to look for signs of disease or aggression.  Solving these problems as soon as possible by changing fan settings, adjusting lighting schedules, dimming lights to control aggression, and contacting a vet if a disease is suspected will minimize stressors in your barn and have a positive impact on egg shell quality.

Bird age
The incidence of cracks is also affected by the age of the bird.  When the hens are young and first coming into production, there can be some thin or shell-less eggs.  This could be caused by the immaturity of the reproductive tract.  Typically this only happens to one or two eggs before the reproductive tract begins to function correctly.  The incidence of thin shells can increase as birds get older because the eggs become larger.  As eggs get larger, the amount of shell material being contributed to each egg remains virtually the same. Consequently, the shell has more surface area to cover, which may lead to thinner shells that are more prone to cracks.  Using management and nutrition tools to manage the egg size within the flock will help minimize the increase in cracks as the flock ages.  This includes working with nutritionists to review the diets to ensure that the nutrients are being fed at the appropriate levels for the age of hen, stage of production, and egg size.  This will help prolong eggs in the large category, rather than encouraging an increase in egg size.

Equipment
Egg collecting equipment such as egg belts, transfer points, escalators, packers, and egg saver wires can also contribute to cracks in the barn.  Any aspect of these systems that contributes to the rough handling of eggs as they move through the system can increase the incidence of cracks.  Being diligent in inspecting and reviewing the equipment, as well as the frequency of egg collection, on a regular basis will help to minimize cracks being caused by mechanical damage.  A regular routine can be established by ensuring maintenance logs are kept with details of problems found and how they were fixed, as well as posting a regular maintenance schedule that all employees have access to.  

While it is impossible to completely eliminate all egg shell quality issues within a laying hen flock, a reduction in the numbers of eggs lost over time is possible.  Working closely with your nutritionist to use nutritional strategies is one option to maintaining optimum shell quality. Managing the many factors within your barn that can contribute to decreased shell quality, such as feed management, stress, and egg collection equipment, will also have a positive influence on shell quality.  Combining good management practices with respect to barn environment, and management as well as building a strong relationship with a nutritionist will optimize your chances of decreasing the number of damaged eggs being produced, which means a healthier flock and more money in your pocket.
Published in Layers
Nov. 9, 2016 - All eggs, pork and veal produced and sold in Massachusetts will be required to come from humanely-caged animals by 2022 as Massachusetts voters decided in favor of Question 3 on Nov. 8.

The Associated Press declared Yes on 3 had prevailed at about 10:15 p.m.

Effective Jan. 1, 2022, the law makes it illegal for any farm owner or operator to "knowingly cause any covered animal to be confined in a cruel manner," and for any business in the state to buy eggs, pork or veal "that the business owner or operator knows or should know is the product of a covered animal that was confined in a cruel manner." | READ MORE.
Published in Business & Policy
Page 1 of 38

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular