Canadian Poultry Magazine

Future of Turkey Production

By Karen Dallimore   

Features Production Turkeys Poultry Production Poultry Research Production Research

The industry is faced with factors such as increasing competition for land, water and resources, as well as an evolving consumer, making genetic decisions more challenging

Paige Rohlf, research and development manager for Aviagen Turkeys Inc., says it takes up to four years for anything at the pedigree level to filter back into the farm level commercial bird and have an effect on the industry

 

While chefs and dieticians encourage the consumption of turkey and turkey products with nutritional information and delicious recipes, geneticists work away at the other end of the production chain, trying to create a better bird for a global market.

The consumer may never have to worry about how to stuff a 60-pound turkey in their oven for Thanksgiving, but at our current rate of progress, it’s not out of line to suggest that the farmer can expect to turn out a 20-week tom of that size for further processing markets, while still needing to produce a smaller table bird with different and possibly unique characteristics.

Advertisement

It’s a challenging task. Paige Rohlf is the research and development manager for Aviagen Turkeys Inc., where she manages the breeding program, selects pedigree lines, and implements new technology and selection techniques. As she explained to the audience at the 2015 PIC Innovations Conference, it takes up to four years for anything at the pedigree level to filter back into the farm level commercial bird and have an effect on the industry.

“It still takes time,” Rohlf said. “It’s very important that we have feedback.” At the pedigree level, everyone is your customer. What’s working? What’s not working? Where is the industry going? What are the domestic and global trends?

What does our Canadian bird look like now? AAFC monitors domestic turkey meat production by bird size: over 40 per cent of domestic Canadian turkey meat production is comprised of heavy birds – those weighing more than 11 kilograms – and mature turkeys. Turkey breasts coming from these large birds are used for deli products or turkey breast roasts, while the dark meat or meat from mature birds will end up as turkey kielbasa or pepperoni, turkey bacon, or turkey burgers and franks. The remaining birds that hit the market are less than 11 kilograms, with 75 per cent sold at retail as whole birds and the rest sold as parts. Our seasonal market parallels that of the U.S. with nearly 80 per cent of whole birds ending up on our Christmas or Thanksgiving tables.

Globally, Aviagen is keeping its eye on current increased production in North Africa and Russia, and potential for increasing markets with importing countries such as Mexico, the EU, China, South Africa and Russia. In terms of consumption, Asia presents a real opportunity: South Central and Eastern Asia will be dependent on importing meat because the population is growing faster than production can support. In Taiwan, turkey is a working man’s meal, as it is more affordable for restaurants to purchase whole turkeys and boil them down to serve over rice than it is to purchase broilers.

But it’s not just volume that must be contemplated when trying to define a “better bird.” The industry is also faced with factors such as increasing competition for land, water and resources, as well as an evolving consumer, making genetic decisions more challenging. In the EU, the industry has started labeling the carbon footprint on food. Rohlf predicts this trend will come our way. It’s hard to calculate but it makes people feel good to buy a product with claims of a lower carbon footprint. Add to this consumer concerns about fertilizer and pesticide use, housing and management systems, raising birds organically or with restricted antibiotics, and layered on top of changes from a whole bird market for making bigger birds and more eggs to a resource management perspective, all while keeping turkey competitive with broilers and pork.

On the production side, think about where we raise the birds. It’s different all around the world, but over the past 70 years, there has been a global trend to raise them indoors, which Rohlf points to as a big step in the right direction in terms of survival. The bird we see is the result of genetics expressed in that environment. There are a lot more inputs we can now measure every day: their weight, feed conversion and health. We can control their environment, their feed, their water and their lighting, but how much can we control their genetics?

What we can control by genetic selection is determined by the heritability of the trait – a highly heritable trait allows faster progress. For example, growth rate is highly heritable: a heavy tom mated with a heavy hen will have heavy offspring; the environment doesn’t matter as much. But it’s not all just as simple as weighing a bird. Feed efficiency is less heritable; reproduction traits, fitness or survival, and livability are much more influenced by the environment, therefore it is harder to make improvements in these traits and we have to rely on technology to collect information to make selection decisions.

When it comes to nutrition, Rohlf then raises the question, how do we feed the birds to realize their full genetic potential? “This is where the challenges are.” While large companies have their own in-house nutritionists and feed companies generally know how to feed turkeys, there are no recent published standards (the last was in 1994). Since then, U.S. heavy toms have gotten 10 pounds heavier. Are we breeding for growth rate or breast meat yield? As the saying goes, the last bit of feed is the most efficient: the birds need to gain weight for maintenance, then they put on additional weight, then the feed goes to the breast. How do the birds use different feeds for maintenance? For growth? For breast meat production?

Some in-house research is indicating protein levels can be reduced as long as amino acids are balanced, while alternative feedstuffs and fillers offer different amino acid spectrums over the traditional corn and soybean diet. More research is needed to determine how the birds utilize amino acids, or use new feeds such as dried distiller’s grains, or how probiotics will affect genetic potential.  

Rohlf is excited about a new genetic opportunity with satellite cells. These myoblasts – baby muscle cells – are determined before a bird hatches but defined after the bird is hatched. Can we make more breast meat by promoting feed intake in the first few days after hatch to stimulate these satellite cells?

Genetic programs have so far focused on efficiency, growth and fitness. For this year, Rohlf expects an improvement of 0.34 per cent in breast meat yield as per cent of live weight in toms at 20 weeks of age, continuing a steady pace of improvement. She also predicts four points of improvement in feed conversion for toms at 45 pounds (20.4 kg), from 2.45 to 2.41 pounds of feed per pound of gain. In weight, toms at 20 weeks of age will be 0.70 pounds (320 g) heavier this year. Aviagen Turkeys’ breeding goal also includes several measures of fitness, including walking ability and livability. These traits receive similar emphasis in selection as the growth and efficiency traits.

 

 

 


Print this page

Advertisement

Stories continue below